Spaces:
Configuration error
Configuration error
Update app.py
Browse files
app.py
CHANGED
@@ -65,9 +65,9 @@ def load_model(model_name):
|
|
65 |
# Ensure the initial model is loaded
|
66 |
tokenizer, model = load_model(selected_model)
|
67 |
|
68 |
-
# Chat history
|
69 |
chat_history = []
|
70 |
-
interaction_count = 0
|
71 |
|
72 |
# Function to handle interaction with model
|
73 |
@spaces.GPU
|
@@ -77,6 +77,11 @@ def interact(user_input, history, interaction_count):
|
|
77 |
if tokenizer is None or model is None:
|
78 |
raise ValueError("Tokenizer or model is not initialized.")
|
79 |
|
|
|
|
|
|
|
|
|
|
|
80 |
messages = history + [{"role": "user", "content": user_input}]
|
81 |
|
82 |
# Ensure roles alternate correctly
|
@@ -88,31 +93,35 @@ def interact(user_input, history, interaction_count):
|
|
88 |
|
89 |
# Generate response using selected model
|
90 |
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to("cuda")
|
91 |
-
chat_history_ids = model.generate(input_ids, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id
|
92 |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
93 |
|
94 |
# Update chat history with generated response
|
95 |
history.append({"role": "user", "content": user_input})
|
|
|
96 |
|
97 |
-
# Check if it's the last interaction
|
98 |
interaction_count += 1
|
99 |
-
|
100 |
-
response += ". Thank you for the questions. That's all for now. Goodbye!"
|
101 |
-
history.append({"role": "assistant", "content": response})
|
102 |
|
103 |
formatted_history = [(entry["content"], None) if entry["role"] == "user" else (None, entry["content"]) for entry in history if entry["role"] in ["user", "assistant"]]
|
|
|
|
|
|
|
|
|
|
|
104 |
return "", formatted_history, history, interaction_count
|
105 |
except Exception as e:
|
106 |
-
if torch.cuda.
|
107 |
torch.cuda.empty_cache()
|
108 |
print(f"Error during interaction: {e}")
|
109 |
raise gr.Error(f"An error occurred during interaction: {str(e)}")
|
110 |
|
111 |
# Function to send selected story and initial message
|
112 |
def send_selected_story(title, model_name, system_prompt):
|
113 |
-
global chat_history
|
114 |
global selected_story
|
115 |
global data # Ensure data is reset
|
|
|
116 |
data = [] # Reset data for new story
|
117 |
interaction_count = 0 # Reset interaction count
|
118 |
tokenizer, model = load_model(model_name)
|
@@ -135,7 +144,7 @@ Here is the story:
|
|
135 |
question_prompt = "Please ask a simple question about the story to encourage interaction."
|
136 |
_, formatted_history, chat_history, interaction_count = interact(question_prompt, chat_history, interaction_count)
|
137 |
|
138 |
-
return formatted_history, chat_history, gr.update(value=[]), story["story"] # Reset the data table and return the story
|
139 |
else:
|
140 |
print("Combined message is empty.")
|
141 |
else:
|
@@ -188,37 +197,36 @@ def save_comment_score(chat_responses, score, comment, story_name, user_name, sy
|
|
188 |
# Create the chat interface using Gradio Blocks
|
189 |
with gr.Blocks() as demo:
|
190 |
gr.Markdown("# Chat with Model")
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
data_table = gr.DataFrame(headers=["User Input", "Chat Response", "Score", "Comment"])
|
217 |
|
218 |
chat_history_json = gr.JSON(value=[], visible=False)
|
219 |
-
|
220 |
-
send_story_button.click(fn=send_selected_story, inputs=[story_dropdown, model_dropdown, system_prompt_dropdown], outputs=[chatbot_output, chat_history_json, data_table, selected_story_textbox])
|
221 |
-
send_message_button.click(fn=interact, inputs=[chatbot_input, chat_history_json, gr.
|
222 |
save_button.click(fn=save_comment_score, inputs=[chatbot_output, score_input, comment_input, story_dropdown, user_dropdown, system_prompt_dropdown], outputs=[data_table, comment_input])
|
223 |
|
224 |
demo.launch()
|
|
|
65 |
# Ensure the initial model is loaded
|
66 |
tokenizer, model = load_model(selected_model)
|
67 |
|
68 |
+
# Chat history
|
69 |
chat_history = []
|
70 |
+
interaction_count = 0 # Initialize interaction count
|
71 |
|
72 |
# Function to handle interaction with model
|
73 |
@spaces.GPU
|
|
|
77 |
if tokenizer is None or model is None:
|
78 |
raise ValueError("Tokenizer or model is not initialized.")
|
79 |
|
80 |
+
if interaction_count >= MAX_INTERACTIONS:
|
81 |
+
history.append({"role": "assistant", "content": "Thank you for the conversation! Have a great day!"})
|
82 |
+
formatted_history = [(entry["content"], None) if entry["role"] == "user" else (None, entry["content"]) for entry in history if entry["role"] in ["user", "assistant"]]
|
83 |
+
return "", formatted_history, history, interaction_count
|
84 |
+
|
85 |
messages = history + [{"role": "user", "content": user_input}]
|
86 |
|
87 |
# Ensure roles alternate correctly
|
|
|
93 |
|
94 |
# Generate response using selected model
|
95 |
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to("cuda")
|
96 |
+
chat_history_ids = model.generate(input_ids, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id) # Increase max_new_tokens
|
97 |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
98 |
|
99 |
# Update chat history with generated response
|
100 |
history.append({"role": "user", "content": user_input})
|
101 |
+
history.append({"role": "assistant", "content": response})
|
102 |
|
|
|
103 |
interaction_count += 1
|
104 |
+
print(f"Interaction count: {interaction_count}")
|
|
|
|
|
105 |
|
106 |
formatted_history = [(entry["content"], None) if entry["role"] == "user" else (None, entry["content"]) for entry in history if entry["role"] in ["user", "assistant"]]
|
107 |
+
|
108 |
+
if interaction_count >= MAX_INTERACTIONS:
|
109 |
+
history.append({"role": "assistant", "content": "Thank you for the conversation! Have a great day!"})
|
110 |
+
formatted_history.append((None, "Thank you for the conversation! Have a great day!"))
|
111 |
+
|
112 |
return "", formatted_history, history, interaction_count
|
113 |
except Exception as e:
|
114 |
+
if torch.cuda.is available():
|
115 |
torch.cuda.empty_cache()
|
116 |
print(f"Error during interaction: {e}")
|
117 |
raise gr.Error(f"An error occurred during interaction: {str(e)}")
|
118 |
|
119 |
# Function to send selected story and initial message
|
120 |
def send_selected_story(title, model_name, system_prompt):
|
121 |
+
global chat_history
|
122 |
global selected_story
|
123 |
global data # Ensure data is reset
|
124 |
+
global interaction_count
|
125 |
data = [] # Reset data for new story
|
126 |
interaction_count = 0 # Reset interaction count
|
127 |
tokenizer, model = load_model(model_name)
|
|
|
144 |
question_prompt = "Please ask a simple question about the story to encourage interaction."
|
145 |
_, formatted_history, chat_history, interaction_count = interact(question_prompt, chat_history, interaction_count)
|
146 |
|
147 |
+
return formatted_history, chat_history, gr.update(value=[]), story["story"], interaction_count # Reset the data table and return the story
|
148 |
else:
|
149 |
print("Combined message is empty.")
|
150 |
else:
|
|
|
197 |
# Create the chat interface using Gradio Blocks
|
198 |
with gr.Blocks() as demo:
|
199 |
gr.Markdown("# Chat with Model")
|
200 |
+
|
201 |
+
with gr.Tab("Context"):
|
202 |
+
model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select Model", value=selected_model)
|
203 |
+
user_dropdown = gr.Dropdown(choices=user_names, label="Select User Name")
|
204 |
+
initial_story = stories[0]["title"] if stories else None
|
205 |
+
story_dropdown = gr.Dropdown(choices=[story["title"] for story in stories], label="Select Story", value=initial_story)
|
206 |
+
system_prompt_dropdown = gr.Dropdown(choices=system_prompts, label="Select System Prompt", value=system_prompts[0])
|
207 |
+
send_story_button = gr.Button("Send Story")
|
208 |
+
|
209 |
+
with gr.Tab("Chat"):
|
210 |
+
selected_story_textbox = gr.Textbox(label="Selected Story", lines=10, interactive=False)
|
211 |
+
with gr.Row():
|
212 |
+
with gr.Column(scale=1):
|
213 |
+
chatbot_input = gr.Textbox(placeholder="Type your message here...", label="User Input")
|
214 |
+
send_message_button = gr.Button("Send")
|
215 |
+
with gr.Column(scale=2):
|
216 |
+
chatbot_output = gr.Chatbot(label="Chat History")
|
217 |
+
|
218 |
+
with gr.Tab("Evaluation"):
|
219 |
+
with gr.Row():
|
220 |
+
with gr.Column(scale=1):
|
221 |
+
score_input = gr.Slider(minimum=0, maximum=5, step=1, label="Score")
|
222 |
+
comment_input = gr.Textbox(placeholder="Add a comment...", label="Comment")
|
223 |
+
save_button = gr.Button("Save Score and Comment")
|
224 |
+
data_table = gr.DataFrame(headers=["User Input", "Chat Response", "Score", "Comment"])
|
|
|
225 |
|
226 |
chat_history_json = gr.JSON(value=[], visible=False)
|
227 |
+
|
228 |
+
send_story_button.click(fn=send_selected_story, inputs=[story_dropdown, model_dropdown, system_prompt_dropdown], outputs=[chatbot_output, chat_history_json, data_table, selected_story_textbox, gr.JSON(value=0)])
|
229 |
+
send_message_button.click(fn=interact, inputs=[chatbot_input, chat_history_json, gr.JSON(value=0)], outputs=[chatbot_input, chatbot_output, chat_history_json, gr.JSON(value=0)])
|
230 |
save_button.click(fn=save_comment_score, inputs=[chatbot_output, score_input, comment_input, story_dropdown, user_dropdown, system_prompt_dropdown], outputs=[data_table, comment_input])
|
231 |
|
232 |
demo.launch()
|