rodrisouza commited on
Commit
43c27a3
·
verified ·
1 Parent(s): fe8c83c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -39
app.py CHANGED
@@ -65,9 +65,9 @@ def load_model(model_name):
65
  # Ensure the initial model is loaded
66
  tokenizer, model = load_model(selected_model)
67
 
68
- # Chat history and interaction count
69
  chat_history = []
70
- interaction_count = 0
71
 
72
  # Function to handle interaction with model
73
  @spaces.GPU
@@ -77,6 +77,11 @@ def interact(user_input, history, interaction_count):
77
  if tokenizer is None or model is None:
78
  raise ValueError("Tokenizer or model is not initialized.")
79
 
 
 
 
 
 
80
  messages = history + [{"role": "user", "content": user_input}]
81
 
82
  # Ensure roles alternate correctly
@@ -88,31 +93,35 @@ def interact(user_input, history, interaction_count):
88
 
89
  # Generate response using selected model
90
  input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to("cuda")
91
- chat_history_ids = model.generate(input_ids, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id, temperature=0.1)
92
  response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
93
 
94
  # Update chat history with generated response
95
  history.append({"role": "user", "content": user_input})
 
96
 
97
- # Check if it's the last interaction
98
  interaction_count += 1
99
- if interaction_count >= MAX_INTERACTIONS:
100
- response += ". Thank you for the questions. That's all for now. Goodbye!"
101
- history.append({"role": "assistant", "content": response})
102
 
103
  formatted_history = [(entry["content"], None) if entry["role"] == "user" else (None, entry["content"]) for entry in history if entry["role"] in ["user", "assistant"]]
 
 
 
 
 
104
  return "", formatted_history, history, interaction_count
105
  except Exception as e:
106
- if torch.cuda.is_available():
107
  torch.cuda.empty_cache()
108
  print(f"Error during interaction: {e}")
109
  raise gr.Error(f"An error occurred during interaction: {str(e)}")
110
 
111
  # Function to send selected story and initial message
112
  def send_selected_story(title, model_name, system_prompt):
113
- global chat_history, interaction_count
114
  global selected_story
115
  global data # Ensure data is reset
 
116
  data = [] # Reset data for new story
117
  interaction_count = 0 # Reset interaction count
118
  tokenizer, model = load_model(model_name)
@@ -135,7 +144,7 @@ Here is the story:
135
  question_prompt = "Please ask a simple question about the story to encourage interaction."
136
  _, formatted_history, chat_history, interaction_count = interact(question_prompt, chat_history, interaction_count)
137
 
138
- return formatted_history, chat_history, gr.update(value=[]), story["story"] # Reset the data table and return the story
139
  else:
140
  print("Combined message is empty.")
141
  else:
@@ -188,37 +197,36 @@ def save_comment_score(chat_responses, score, comment, story_name, user_name, sy
188
  # Create the chat interface using Gradio Blocks
189
  with gr.Blocks() as demo:
190
  gr.Markdown("# Chat with Model")
191
-
192
- model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select Model", value=selected_model)
193
- user_dropdown = gr.Dropdown(choices=user_names, label="Select User Name")
194
- initial_story = stories[0]["title"] if stories else None
195
- story_dropdown = gr.Dropdown(choices=[story["title"] for story in stories], label="Select Story", value=initial_story)
196
-
197
- system_prompt_dropdown = gr.Dropdown(choices=system_prompts, label="Select System Prompt", value=system_prompts[0])
198
-
199
- send_story_button = gr.Button("Send Story")
200
- selected_story_textbox = gr.Textbox(label="Selected Story", lines=10, interactive=False)
201
-
202
- with gr.Row():
203
- with gr.Column(scale=1):
204
- chatbot_input = gr.Textbox(placeholder="Type your message here...", label="User Input")
205
- send_message_button = gr.Button("Send")
206
-
207
- with gr.Column(scale=2):
208
- chatbot_output = gr.Chatbot(label="Chat History")
209
-
210
- with gr.Row():
211
- with gr.Column(scale=1):
212
- score_input = gr.Slider(minimum=0, maximum=5, step=1, label="Score")
213
- comment_input = gr.Textbox(placeholder="Add a comment...", label="Comment")
214
- save_button = gr.Button("Save Score and Comment")
215
-
216
- data_table = gr.DataFrame(headers=["User Input", "Chat Response", "Score", "Comment"])
217
 
218
  chat_history_json = gr.JSON(value=[], visible=False)
219
-
220
- send_story_button.click(fn=send_selected_story, inputs=[story_dropdown, model_dropdown, system_prompt_dropdown], outputs=[chatbot_output, chat_history_json, data_table, selected_story_textbox])
221
- send_message_button.click(fn=interact, inputs=[chatbot_input, chat_history_json, gr.State(interaction_count)], outputs=[chatbot_input, chatbot_output, chat_history_json, gr.State(interaction_count)])
222
  save_button.click(fn=save_comment_score, inputs=[chatbot_output, score_input, comment_input, story_dropdown, user_dropdown, system_prompt_dropdown], outputs=[data_table, comment_input])
223
 
224
  demo.launch()
 
65
  # Ensure the initial model is loaded
66
  tokenizer, model = load_model(selected_model)
67
 
68
+ # Chat history
69
  chat_history = []
70
+ interaction_count = 0 # Initialize interaction count
71
 
72
  # Function to handle interaction with model
73
  @spaces.GPU
 
77
  if tokenizer is None or model is None:
78
  raise ValueError("Tokenizer or model is not initialized.")
79
 
80
+ if interaction_count >= MAX_INTERACTIONS:
81
+ history.append({"role": "assistant", "content": "Thank you for the conversation! Have a great day!"})
82
+ formatted_history = [(entry["content"], None) if entry["role"] == "user" else (None, entry["content"]) for entry in history if entry["role"] in ["user", "assistant"]]
83
+ return "", formatted_history, history, interaction_count
84
+
85
  messages = history + [{"role": "user", "content": user_input}]
86
 
87
  # Ensure roles alternate correctly
 
93
 
94
  # Generate response using selected model
95
  input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to("cuda")
96
+ chat_history_ids = model.generate(input_ids, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id) # Increase max_new_tokens
97
  response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
98
 
99
  # Update chat history with generated response
100
  history.append({"role": "user", "content": user_input})
101
+ history.append({"role": "assistant", "content": response})
102
 
 
103
  interaction_count += 1
104
+ print(f"Interaction count: {interaction_count}")
 
 
105
 
106
  formatted_history = [(entry["content"], None) if entry["role"] == "user" else (None, entry["content"]) for entry in history if entry["role"] in ["user", "assistant"]]
107
+
108
+ if interaction_count >= MAX_INTERACTIONS:
109
+ history.append({"role": "assistant", "content": "Thank you for the conversation! Have a great day!"})
110
+ formatted_history.append((None, "Thank you for the conversation! Have a great day!"))
111
+
112
  return "", formatted_history, history, interaction_count
113
  except Exception as e:
114
+ if torch.cuda.is available():
115
  torch.cuda.empty_cache()
116
  print(f"Error during interaction: {e}")
117
  raise gr.Error(f"An error occurred during interaction: {str(e)}")
118
 
119
  # Function to send selected story and initial message
120
  def send_selected_story(title, model_name, system_prompt):
121
+ global chat_history
122
  global selected_story
123
  global data # Ensure data is reset
124
+ global interaction_count
125
  data = [] # Reset data for new story
126
  interaction_count = 0 # Reset interaction count
127
  tokenizer, model = load_model(model_name)
 
144
  question_prompt = "Please ask a simple question about the story to encourage interaction."
145
  _, formatted_history, chat_history, interaction_count = interact(question_prompt, chat_history, interaction_count)
146
 
147
+ return formatted_history, chat_history, gr.update(value=[]), story["story"], interaction_count # Reset the data table and return the story
148
  else:
149
  print("Combined message is empty.")
150
  else:
 
197
  # Create the chat interface using Gradio Blocks
198
  with gr.Blocks() as demo:
199
  gr.Markdown("# Chat with Model")
200
+
201
+ with gr.Tab("Context"):
202
+ model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select Model", value=selected_model)
203
+ user_dropdown = gr.Dropdown(choices=user_names, label="Select User Name")
204
+ initial_story = stories[0]["title"] if stories else None
205
+ story_dropdown = gr.Dropdown(choices=[story["title"] for story in stories], label="Select Story", value=initial_story)
206
+ system_prompt_dropdown = gr.Dropdown(choices=system_prompts, label="Select System Prompt", value=system_prompts[0])
207
+ send_story_button = gr.Button("Send Story")
208
+
209
+ with gr.Tab("Chat"):
210
+ selected_story_textbox = gr.Textbox(label="Selected Story", lines=10, interactive=False)
211
+ with gr.Row():
212
+ with gr.Column(scale=1):
213
+ chatbot_input = gr.Textbox(placeholder="Type your message here...", label="User Input")
214
+ send_message_button = gr.Button("Send")
215
+ with gr.Column(scale=2):
216
+ chatbot_output = gr.Chatbot(label="Chat History")
217
+
218
+ with gr.Tab("Evaluation"):
219
+ with gr.Row():
220
+ with gr.Column(scale=1):
221
+ score_input = gr.Slider(minimum=0, maximum=5, step=1, label="Score")
222
+ comment_input = gr.Textbox(placeholder="Add a comment...", label="Comment")
223
+ save_button = gr.Button("Save Score and Comment")
224
+ data_table = gr.DataFrame(headers=["User Input", "Chat Response", "Score", "Comment"])
 
225
 
226
  chat_history_json = gr.JSON(value=[], visible=False)
227
+
228
+ send_story_button.click(fn=send_selected_story, inputs=[story_dropdown, model_dropdown, system_prompt_dropdown], outputs=[chatbot_output, chat_history_json, data_table, selected_story_textbox, gr.JSON(value=0)])
229
+ send_message_button.click(fn=interact, inputs=[chatbot_input, chat_history_json, gr.JSON(value=0)], outputs=[chatbot_input, chatbot_output, chat_history_json, gr.JSON(value=0)])
230
  save_button.click(fn=save_comment_score, inputs=[chatbot_output, score_input, comment_input, story_dropdown, user_dropdown, system_prompt_dropdown], outputs=[data_table, comment_input])
231
 
232
  demo.launch()