Spaces:
Runtime error
Runtime error
import gradio as gr | |
import json | |
import os | |
from datetime import datetime, timezone | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.display.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
FAQ_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
NUMERIC_INTERVALS, | |
TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
from src.submission.check_validity import already_submitted_models | |
from src.tools.collections import update_collections | |
from src.tools.plots import ( | |
create_metric_plot_obj, | |
create_plot_df, | |
create_scores_df, | |
) | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN) | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
) | |
except Exception: | |
restart_space() | |
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
update_collections(original_df.copy()) | |
leaderboard_df = original_df.copy() | |
plot_df = create_plot_df(create_scores_df(raw_data)) | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
# Searching and filtering | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
type_query: list, | |
precision_query: str, | |
size_query: list, | |
show_deleted: bool, | |
query: str, | |
): | |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted) | |
filtered_df = filter_queries(query, filtered_df) | |
df = select_columns(filtered_df, columns) | |
return df | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
always_here_cols = [ | |
AutoEvalColumn.model_type_symbol.name, | |
AutoEvalColumn.model.name, | |
] | |
# We use COLS to maintain sorting | |
filtered_df = df[ | |
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name] | |
] | |
return filtered_df | |
def filter_queries(query: str, filtered_df: pd.DataFrame): | |
"""Added by Abishek""" | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
filtered_df = filtered_df.drop_duplicates( | |
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] | |
) | |
return filtered_df | |
def filter_models( | |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool | |
) -> pd.DataFrame: | |
# Show all models | |
if show_deleted: | |
filtered_df = df | |
else: # Show only still on the hub models | |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] | |
type_emoji = [t[0] for t in type_query] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
filtered_df = filtered_df.loc[mask] | |
return filtered_df | |
# demo = gr.Blocks(css=custom_css) | |
# with demo: | |
# gr.HTML(TITLE) | |
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
# | |
# with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
# with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
# with gr.Row(): | |
# with gr.Column(): | |
# with gr.Row(): | |
# search_bar = gr.Textbox( | |
# placeholder=" 🔍 Search for your model and press ENTER...", | |
# show_label=False, | |
# elem_id="search-bar", | |
# ) | |
# with gr.Row(): | |
# shown_columns = gr.CheckboxGroup( | |
# choices=[ | |
# c | |
# for c in COLS | |
# if c | |
# not in [ | |
# AutoEvalColumn.dummy.name, | |
# AutoEvalColumn.model.name, | |
# AutoEvalColumn.model_type_symbol.name, | |
# AutoEvalColumn.still_on_hub.name, | |
# ] | |
# ], | |
# value=[ | |
# c | |
# for c in COLS_LITE | |
# if c | |
# not in [ | |
# AutoEvalColumn.dummy.name, | |
# AutoEvalColumn.model.name, | |
# AutoEvalColumn.model_type_symbol.name, | |
# AutoEvalColumn.still_on_hub.name, | |
# ] | |
# ], | |
# label="Select columns to show", | |
# elem_id="column-select", | |
# interactive=True, | |
# ) | |
# with gr.Row(): | |
# deleted_models_visibility = gr.Checkbox( | |
# value=True, label="Show gated/private/deleted models", interactive=True | |
# ) | |
# with gr.Column(min_width=320): | |
# with gr.Box(elem_id="box-filter"): | |
# filter_columns_type = gr.CheckboxGroup( | |
# label="Model types", | |
# choices=[ | |
# ModelType.PT.to_str(), | |
# ModelType.FT.to_str(), | |
# ModelType.IFT.to_str(), | |
# ModelType.RL.to_str(), | |
# ], | |
# value=[ | |
# ModelType.PT.to_str(), | |
# ModelType.FT.to_str(), | |
# ModelType.IFT.to_str(), | |
# ModelType.RL.to_str(), | |
# ], | |
# interactive=True, | |
# elem_id="filter-columns-type", | |
# ) | |
# filter_columns_precision = gr.CheckboxGroup( | |
# label="Precision", | |
# choices=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"], | |
# value=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"], | |
# interactive=True, | |
# elem_id="filter-columns-precision", | |
# ) | |
# filter_columns_size = gr.CheckboxGroup( | |
# label="Model sizes", | |
# choices=list(NUMERIC_INTERVALS.keys()), | |
# value=list(NUMERIC_INTERVALS.keys()), | |
# interactive=True, | |
# elem_id="filter-columns-size", | |
# ) | |
# | |
# leaderboard_table = gr.components.Dataframe( | |
# value=leaderboard_df[ | |
# [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] | |
# + shown_columns.value | |
# + [AutoEvalColumn.dummy.name] | |
# ], | |
# headers=[ | |
# AutoEvalColumn.model_type_symbol.name, | |
# AutoEvalColumn.model.name, | |
# ] | |
# + shown_columns.value | |
# + [AutoEvalColumn.dummy.name], | |
# datatype=TYPES, | |
# max_rows=None, | |
# elem_id="leaderboard-table", | |
# interactive=False, | |
# visible=True, | |
# ) | |
# | |
# # Dummy leaderboard for handling the case when the user uses backspace key | |
# hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
# value=original_df, | |
# headers=COLS, | |
# datatype=TYPES, | |
# max_rows=None, | |
# visible=False, | |
# ) | |
# search_bar.submit( | |
# update_table, | |
# [ | |
# hidden_leaderboard_table_for_search, | |
# leaderboard_table, | |
# shown_columns, | |
# filter_columns_type, | |
# filter_columns_precision, | |
# filter_columns_size, | |
# deleted_models_visibility, | |
# search_bar, | |
# ], | |
# leaderboard_table, | |
# ) | |
# shown_columns.change( | |
# update_table, | |
# [ | |
# hidden_leaderboard_table_for_search, | |
# leaderboard_table, | |
# shown_columns, | |
# filter_columns_type, | |
# filter_columns_precision, | |
# filter_columns_size, | |
# deleted_models_visibility, | |
# search_bar, | |
# ], | |
# leaderboard_table, | |
# queue=True, | |
# ) | |
# filter_columns_type.change( | |
# update_table, | |
# [ | |
# hidden_leaderboard_table_for_search, | |
# leaderboard_table, | |
# shown_columns, | |
# filter_columns_type, | |
# filter_columns_precision, | |
# filter_columns_size, | |
# deleted_models_visibility, | |
# search_bar, | |
# ], | |
# leaderboard_table, | |
# queue=True, | |
# ) | |
# filter_columns_precision.change( | |
# update_table, | |
# [ | |
# hidden_leaderboard_table_for_search, | |
# leaderboard_table, | |
# shown_columns, | |
# filter_columns_type, | |
# filter_columns_precision, | |
# filter_columns_size, | |
# deleted_models_visibility, | |
# search_bar, | |
# ], | |
# leaderboard_table, | |
# queue=True, | |
# ) | |
# filter_columns_size.change( | |
# update_table, | |
# [ | |
# hidden_leaderboard_table_for_search, | |
# leaderboard_table, | |
# shown_columns, | |
# filter_columns_type, | |
# filter_columns_precision, | |
# filter_columns_size, | |
# deleted_models_visibility, | |
# search_bar, | |
# ], | |
# leaderboard_table, | |
# queue=True, | |
# ) | |
# deleted_models_visibility.change( | |
# update_table, | |
# [ | |
# hidden_leaderboard_table_for_search, | |
# leaderboard_table, | |
# shown_columns, | |
# filter_columns_type, | |
# filter_columns_precision, | |
# filter_columns_size, | |
# deleted_models_visibility, | |
# search_bar, | |
# ], | |
# leaderboard_table, | |
# queue=True, | |
# ) | |
# with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): | |
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
# | |
# with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
# with gr.Column(): | |
# with gr.Row(): | |
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
# | |
# with gr.Column(): | |
# with gr.Accordion( | |
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# finished_eval_table = gr.components.Dataframe( | |
# value=finished_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# max_rows=5, | |
# ) | |
# with gr.Accordion( | |
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# running_eval_table = gr.components.Dataframe( | |
# value=running_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# max_rows=5, | |
# ) | |
# | |
# with gr.Accordion( | |
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# pending_eval_table = gr.components.Dataframe( | |
# value=pending_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# max_rows=5, | |
# ) | |
# with gr.Row(): | |
# gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") | |
# | |
# with gr.Row(): | |
# with gr.Column(): | |
# model_name_textbox = gr.Textbox(label="Model name") | |
# revision_name_textbox = gr.Textbox(label="revision", placeholder="main") | |
# private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC) | |
# model_type = gr.Dropdown( | |
# choices=[ | |
# ModelType.PT.to_str(" : "), | |
# ModelType.FT.to_str(" : "), | |
# ModelType.IFT.to_str(" : "), | |
# ModelType.RL.to_str(" : "), | |
# ], | |
# label="Model type", | |
# multiselect=False, | |
# value=None, | |
# interactive=True, | |
# ) | |
# | |
# with gr.Column(): | |
# precision = gr.Dropdown( | |
# choices=[ | |
# "float16", | |
# "bfloat16", | |
# "8bit (LLM.int8)", | |
# "4bit (QLoRA / FP4)", | |
# "GPTQ" | |
# ], | |
# label="Precision", | |
# multiselect=False, | |
# value="float16", | |
# interactive=True, | |
# ) | |
# weight_type = gr.Dropdown( | |
# choices=["Original", "Delta", "Adapter"], | |
# label="Weights type", | |
# multiselect=False, | |
# value="Original", | |
# interactive=True, | |
# ) | |
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
# | |
# submit_button = gr.Button("Submit Eval") | |
# submission_result = gr.Markdown() | |
# submit_button.click( | |
# add_new_eval, | |
# [ | |
# model_name_textbox, | |
# base_model_name_textbox, | |
# revision_name_textbox, | |
# precision, | |
# private, | |
# weight_type, | |
# model_type, | |
# ], | |
# submission_result, | |
# ) | |
# | |
# with gr.Row(): | |
# with gr.Accordion("📙 Citation", open=False): | |
# citation_button = gr.Textbox( | |
# value=CITATION_BUTTON_TEXT, | |
# label=CITATION_BUTTON_LABEL, | |
# elem_id="citation-button", | |
# ).style(show_copy_button=True) | |
# | |
# dummy = gr.Textbox(visible=False) | |
# demo.load( | |
# change_tab, | |
# dummy, | |
# tabs, | |
# _js=get_window_url_params, | |
# ) | |
dummy1 = gr.Textbox(visible=False) | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
headers=COLS, | |
datatype=TYPES, | |
visible=False | |
) | |
def display(x, y): | |
return original_df | |
INTRODUCTION_TEXT = """ | |
This is a copied space from Open Source LLM leaderboard. Instead of displaying | |
the results as table the space simply provides a gradio API interface to access | |
the full leaderboard data easily. | |
Example python on how to access the data: | |
```python | |
from gradio_client import Client | |
import json | |
client = Client("https://felixz-open-llm-leaderboard.hf.space/") | |
json_data = client.predict("","", api_name='/predict') | |
with open(json_data, 'r') as file: | |
file_data = file.read() | |
# Load the JSON data | |
data = json.loads(file_data) | |
# Get the headers and the data | |
headers = data['headers'] | |
data = data['data'] | |
``` | |
""" | |
interface = gr.Interface( | |
fn=display, | |
inputs=[ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text"), | |
dummy1 | |
], | |
outputs=[hidden_leaderboard_table_for_search] | |
) | |
# Client auth error.. need to see how this works. | |
#scheduler = BackgroundScheduler() | |
#scheduler.add_job(restart_space, "interval", seconds=21600) | |
#scheduler.start() | |
interface.launch() | |
#demo.queue(concurrency_count=40).launch() | |