File size: 5,673 Bytes
76f42d9
 
 
 
75bc1c1
76f42d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75bc1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76f42d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6a8855
 
76f42d9
b6a8855
 
76f42d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4fffe7
76f42d9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import streamlit as st
import PyPDF2
import io
import os
import pdfplumber

unicodeatoz = ["ब", "द", "अ", "म", "भ", "ा", "न", "ज", "ष्", "व", "प", "ि", "फ", "ल", "य", "उ", "त्र", "च", "क", "त", "ग", "ख", "ध", "ह", "थ", "श"]
unicodeAtoZ = ["ब्", "ध", "ऋ", "म्", "भ्", "ँ", "न्", "ज्", "क्ष्", "व्", "प्", "ी", "ः", "ल्", "इ", "ए", "त्त", "च्", "क्", "त्", "ग्", "ख्", "ध्", "ह्", "थ्", "श्"]
unicode0to9 = ["ण्", "ज्ञ", "द्द", "घ", "द्ध", "छ", "ट", "ठ", "ड", "ढ"]
symbolsDict = {
    "~": "ञ्",
    "`": "ञ",
    "!": "१",
    "@": "२",
    "#": "३",
    "$": "४",
    "%": "५",
    "^": "६",
    "&": "७",
    "*": "८",
    "(": "९",
    ")": "०",
    "-": "(",
    "_": ")",
    "+": "ं",
    "[": "ृ",
    "{": "र्",
    "]": "े",
    "}": "ै",
    "\\": "्",
    "|": "्र",
    ";": "स",
    ":": "स्",
    "'": "ु",
    "\"": "ू",
    ",": ",",
    "<": "?",
    ".": "।",
    ">": "श्र",
    "/": "र",
    "?": "रु",
    "=": ".",
    "ˆ": "फ्",
    "Î": "ङ्ख",
    "å": "द्व",
    "÷": "/"
}

def normalizePreeti(preetitxt):
    normalized = ''
    previoussymbol = ''
    preetitxt = preetitxt.replace('qm', 's|')
    preetitxt = preetitxt.replace('f]', 'ो')
    preetitxt = preetitxt.replace('km', 'फ')
    preetitxt = preetitxt.replace('0f', 'ण')
    preetitxt = preetitxt.replace('If', 'क्ष')
    preetitxt = preetitxt.replace('if', 'ष')
    preetitxt = preetitxt.replace('cf', 'आ')
    index = -1
    while index + 1 < len(preetitxt):
        index += 1
        character = preetitxt[index]
        try:
            if preetitxt[index + 2] == '{':
                if preetitxt[index + 1] == 'f' or preetitxt[index + 1] == 'ो':
                    normalized += '{' + character + preetitxt[index + 1]
                    index += 2
                    continue
            if preetitxt[index + 1] == '{':
                if character != 'f':
                    normalized += '{' + character
                    index += 1
                    continue
        except IndexError:
            pass
        if character == 'l':
            previoussymbol = 'l'
            continue
        else:
            normalized += character + previoussymbol
            previoussymbol = ''
    return normalized

def convert(preeti):
    converted = ''
    normalizedpreeti = normalizePreeti(preeti)
    for index, character in enumerate(normalizedpreeti):
        try:
            if ord(character) >= 97 and ord(character) <= 122:
                converted += unicodeatoz[ord(character) - 97]
            elif ord(character) >= 65 and ord(character) <= 90:
                converted += unicodeAtoZ[ord(character) - 65]
            elif ord(character) >= 48 and ord(character) <= 57:
                converted += unicode0to9[ord(character) - 48]
            else:
                converted += symbolsDict[character]
        except KeyError:
            converted += character

    return converted

def extract_text_from_pdf(pdf_file):
    text = ''
    with pdfplumber.open(pdf_file) as pdf:
        for page in pdf.pages:
            extracted_text = page.extract_text()
            if extracted_text:
                text += extracted_text

    return handle_vertical_text(text)

def handle_vertical_text(text):
    # If the text is vertical, it's likely arranged with one character per line.
    # We'll attempt to reformat the text by concatenating characters that are stacked vertically.
    lines = text.split('\n')
    vertical_lines = []
    horizontal_line = ''

    for line in lines:
        if len(line) == 1:  # Possible vertical arrangement (single character per line)
            horizontal_line += line
        else:
            if horizontal_line:  # If we've built a horizontal line, add it.
                vertical_lines.append(horizontal_line)
                horizontal_line = ''
            vertical_lines.append(line)  # Add the full line if it's not vertical.

    if horizontal_line:
        vertical_lines.append(horizontal_line)

    return ' '.join(vertical_lines)

def process_file(inputfile):
    ext = os.path.splitext(inputfile)[1].lower()
    if ext == '.pdf':
        preeti = extract_text_from_pdf(inputfile)
    else:
        with open(inputfile, "r") as fp:
            preeti = fp.read()
    return convert(preeti)

def main():
    st.title("PDF/TXT to Unicode Converter(Nepali RAG)")

    uploaded_file = st.file_uploader("Choose a PDF or TXT file", type=["pdf", "txt"])

    if uploaded_file is not None:
        file_extension = os.path.splitext(uploaded_file.name)[1].lower()

        if file_extension == ".pdf":
            text = extract_text_from_pdf(io.BytesIO(uploaded_file.read()))
            
        else:  # .txt file
            with open(inputfile, "r") as fp:
                text = fp.read()

        converted_text = convert(text)

        st.subheader("Original Text")
        st.text_area("", value=text, height=200)

        st.subheader("Converted Text")
        st.text_area("", value=converted_text, height=200)

        # Create a download button for the converted text
        st.download_button(
            label="Download Converted Text",
            data=converted_text.encode("utf-8"),
            file_name="converted_text.txt",
            mime="text/plain"
        )

    # Write footer
    st.markdown("Made with ❤️ by Sumit Yadav(https://sumityadav.com.np)")

if __name__ == "__main__":
    main()