Spaces:
Sleeping
Sleeping
File size: 6,031 Bytes
76f42d9 66882a0 76f42d9 93294e9 66882a0 2d857e8 76f42d9 93294e9 76f42d9 2d857e8 93294e9 2d857e8 93294e9 2d857e8 93294e9 2d857e8 93294e9 2d857e8 93294e9 2d857e8 93294e9 2d857e8 ac96a59 2d857e8 93294e9 ac96a59 76f42d9 2d857e8 93294e9 2d857e8 76f42d9 2d857e8 93294e9 2d857e8 93294e9 76f42d9 2d857e8 93294e9 2d857e8 93294e9 2d857e8 93294e9 2d857e8 93294e9 2d857e8 93294e9 2d857e8 93294e9 76f42d9 2d857e8 93294e9 2d857e8 93294e9 76f42d9 ac96a59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import streamlit as st
import PyPDF2
import io
import os
import re
# Existing mapping dictionaries remain the same
unicodeatoz = ["ब", "द", "अ", "म", "भ", "ा", "न", "ज", "ष्", "व", "प", "ि", "फ", "ल", "य", "उ", "त्र", "च", "क", "त", "ग", "ख", "ध", "ह", "थ", "श"]
unicodeAtoZ = ["ब्", "ध", "ऋ", "म्", "भ्", "ँ", "न्", "ज्", "क्ष्", "व्", "प्", "ी", "ः", "ल्", "इ", "ए", "त्त", "च्", "क्", "त्", "ग्", "ख्", "ध्", "ह्", "थ्", "श्"]
unicode0to9 = ["ण्", "ज्ञ", "द्द", "घ", "द्ध", "छ", "ट", "ठ", "ड", "ढ"]
symbolsDict = {
"~": "ञ्", "`": "ञ", "!": "१", "@": "२", "#": "३", "$": "४", "%": "५",
"^": "६", "&": "७", "*": "८", "(": "९", ")": "०", "-": "(", "_": ")",
"+": "ं", "[": "ृ", "{": "र्", "]": "े", "}": "ै", "\\": "्", "|": "्र",
";": "स", ":": "स्", "'": "ु", "\"": "ू", ",": ",", "<": "?", ".": "।",
">": "श्र", "/": "र", "?": "रु", "=": ".", "ˆ": "फ्", "Î": "ङ्ख",
"å": "द्व", "÷": "/"
}
# Common Preeti patterns that need to be preserved as units
preeti_compounds = {
'qm': 's|',
'f]': 'ो',
'km': 'फ',
'0f': 'ण',
'If': 'क्ष',
'if': 'ष',
'cf': 'आ',
'6«': 'ट्र',
'g]': 'ने',
'8f': 'डा',
'«': '्र',
'j|m': 'क्र',
';+': 'सं'
}
def is_nepali_unicode(char):
"""Check if character is already in Nepali Unicode range"""
return '\u0900' <= char <= '\u097F'
def get_preeti_segment(text, start_idx):
"""
Extract a complete Preeti segment starting from given index.
Returns the segment and the ending index.
"""
if start_idx >= len(text):
return "", start_idx
current_idx = start_idx
segment = ""
while current_idx < len(text):
# Check for compound characters first
matched = False
for compound in sorted(preeti_compounds.keys(), key=len, reverse=True):
if text[current_idx:].startswith(compound):
segment += compound
current_idx += len(compound)
matched = True
break
if not matched:
char = text[current_idx]
if char.isspace() or is_nepali_unicode(char):
break
segment += char
current_idx += 1
return segment, current_idx
def normalize_preeti(preetitxt):
"""Normalize Preeti text with improved compound handling"""
# First handle the compound characters
for old, new in preeti_compounds.items():
preetitxt = preetitxt.replace(old, new)
# Handle remaining special cases
normalized = ''
idx = 0
while idx < len(preetitxt):
if idx + 1 < len(preetitxt) and preetitxt[idx] == 'l':
normalized += preetitxt[idx + 1] + 'ि'
idx += 2
else:
normalized += preetitxt[idx]
idx += 1
return normalized
def convert_segment(segment):
"""Convert a single Preeti segment to Unicode"""
if not segment.strip():
return segment
# If already in Nepali Unicode, return as is
if all(is_nepali_unicode(char) for char in segment if char.strip()):
return segment
converted = ''
normalized = normalize_preeti(segment)
for char in normalized:
if is_nepali_unicode(char):
converted += char
elif char.isascii():
try:
if 'a' <= char <= 'z':
converted += unicodeatoz[ord(char) - ord('a')]
elif 'A' <= char <= 'Z':
converted += unicodeAtoZ[ord(char) - ord('A')]
elif '0' <= char <= '9':
converted += unicode0to9[ord(char) - ord('0')]
else:
converted += symbolsDict.get(char, char)
except (IndexError, KeyError):
converted += char
else:
converted += char
return converted
def smart_convert_mixed(text):
"""
Convert text while handling mixed Preeti, Unicode and English.
Processes text character by character to maintain proper segmentation.
"""
result = ""
idx = 0
while idx < len(text):
char = text[idx]
# Skip spaces and preserve them
if char.isspace():
result += char
idx += 1
continue
# If character is already in Nepali Unicode, preserve it
if is_nepali_unicode(char):
result += char
idx += 1
continue
# If it's a potential Preeti character, get the complete segment
if char.isascii():
preeti_segment, new_idx = get_preeti_segment(text, idx)
if preeti_segment:
result += convert_segment(preeti_segment)
idx = new_idx
continue
# Default case: preserve the character
result += char
idx += 1
return result
def main():
st.title("Advanced Mixed Text Converter")
st.write("Converts Preeti text while preserving existing Nepali Unicode and English")
# Input area
input_text = st.text_area("Enter text to convert", height=200)
if st.button("Convert"):
if input_text:
converted_text = smart_convert_mixed(input_text)
st.subheader("Converted Text")
st.text_area("", value=converted_text, height=200)
st.download_button(
label="Download Converted Text",
data=converted_text.encode("utf-8"),
file_name="converted_text.txt",
mime="text/plain"
)
if __name__ == "__main__":
main() |