robinwitch commited on
Commit
a30f1f1
·
1 Parent(s): 6ee5c65
Files changed (1) hide show
  1. utils/other_tools_hf.py +7 -6
utils/other_tools_hf.py CHANGED
@@ -694,11 +694,12 @@ def render_one_sequence_no_gt(
694
  import moviepy.editor as mp
695
  import librosa
696
 
 
697
  model = smplx.create(model_folder, model_type=model_type,
698
  gender=gender, use_face_contour=use_face_contour,
699
  num_betas=num_betas,
700
  num_expression_coeffs=num_expression_coeffs,
701
- ext=ext, use_pca=False).cuda()
702
 
703
  #data_npz = np.load(f"{output_dir}{res_npz_path}.npz")
704
  data_np_body = np.load(res_npz_path, allow_pickle=True)
@@ -715,12 +716,12 @@ def render_one_sequence_no_gt(
715
  seconds = 1
716
  #data_npz["jaw_pose"].shape[0]
717
  n = data_np_body["poses"].shape[0]
718
- beta = torch.from_numpy(data_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda()
719
  beta = beta.repeat(n, 1)
720
- expression = torch.from_numpy(data_np_body["expressions"][:n]).to(torch.float32).cuda()
721
- jaw_pose = torch.from_numpy(data_np_body["poses"][:n, 66:69]).to(torch.float32).cuda()
722
- pose = torch.from_numpy(data_np_body["poses"][:n]).to(torch.float32).cuda()
723
- transl = torch.from_numpy(data_np_body["trans"][:n]).to(torch.float32).cuda()
724
  # print(beta.shape, expression.shape, jaw_pose.shape, pose.shape, transl.shape, pose[:,:3].shape)
725
  output = model(betas=beta, transl=transl, expression=expression, jaw_pose=jaw_pose,
726
  global_orient=pose[:,:3], body_pose=pose[:,3:21*3+3], left_hand_pose=pose[:,25*3:40*3], right_hand_pose=pose[:,40*3:55*3],
 
694
  import moviepy.editor as mp
695
  import librosa
696
 
697
+ device = "cpu"
698
  model = smplx.create(model_folder, model_type=model_type,
699
  gender=gender, use_face_contour=use_face_contour,
700
  num_betas=num_betas,
701
  num_expression_coeffs=num_expression_coeffs,
702
+ ext=ext, use_pca=False).to(device)
703
 
704
  #data_npz = np.load(f"{output_dir}{res_npz_path}.npz")
705
  data_np_body = np.load(res_npz_path, allow_pickle=True)
 
716
  seconds = 1
717
  #data_npz["jaw_pose"].shape[0]
718
  n = data_np_body["poses"].shape[0]
719
+ beta = torch.from_numpy(data_np_body["betas"]).to(torch.float32).unsqueeze(0).to(device)
720
  beta = beta.repeat(n, 1)
721
+ expression = torch.from_numpy(data_np_body["expressions"][:n]).to(torch.float32).to(device)
722
+ jaw_pose = torch.from_numpy(data_np_body["poses"][:n, 66:69]).to(torch.float32).to(device)
723
+ pose = torch.from_numpy(data_np_body["poses"][:n]).to(torch.float32).to(device)
724
+ transl = torch.from_numpy(data_np_body["trans"][:n]).to(torch.float32).to(device)
725
  # print(beta.shape, expression.shape, jaw_pose.shape, pose.shape, transl.shape, pose[:,:3].shape)
726
  output = model(betas=beta, transl=transl, expression=expression, jaw_pose=jaw_pose,
727
  global_orient=pose[:,:3], body_pose=pose[:,3:21*3+3], left_hand_pose=pose[:,25*3:40*3], right_hand_pose=pose[:,40*3:55*3],