Spaces:
Runtime error
Runtime error
| import logging | |
| import math | |
| from collections import OrderedDict | |
| from functools import partial | |
| from typing import Callable, List, Optional, Sequence, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| from torch.jit import Final | |
| from .config import use_fused_attn | |
| from .helpers import to_2tuple | |
| __all__ = ['VisionTransformer'] # model_registry will add each entrypoint fn to this | |
| _logger = logging.getLogger(__name__) | |
| def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
| This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
| the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
| See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
| changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
| 'survival rate' as the argument. | |
| """ | |
| if drop_prob == 0. or not training: | |
| return x | |
| keep_prob = 1 - drop_prob | |
| shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
| random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
| if keep_prob > 0.0 and scale_by_keep: | |
| random_tensor.div_(keep_prob) | |
| return x * random_tensor | |
| class DropPath(nn.Module): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
| """ | |
| def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True): | |
| super(DropPath, self).__init__() | |
| self.drop_prob = drop_prob | |
| self.scale_by_keep = scale_by_keep | |
| def forward(self, x): | |
| return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) | |
| def extra_repr(self): | |
| return f'drop_prob={round(self.drop_prob,3):0.3f}' | |
| class Attention(nn.Module): | |
| fused_attn: Final[bool] | |
| def __init__( | |
| self, | |
| dim, | |
| num_heads=8, | |
| qkv_bias=False, | |
| qk_norm=False, | |
| attn_drop=0., | |
| proj_drop=0., | |
| norm_layer=nn.LayerNorm, | |
| ): | |
| super().__init__() | |
| assert dim % num_heads == 0, 'dim should be divisible by num_heads' | |
| self.num_heads = num_heads | |
| self.head_dim = dim // num_heads | |
| self.scale = self.head_dim ** -0.5 | |
| self.fused_attn = use_fused_attn() | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
| self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| def forward(self, x): | |
| B, N, C = x.shape | |
| qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv.unbind(0) | |
| q, k = self.q_norm(q), self.k_norm(k) | |
| if self.fused_attn: | |
| x = F.scaled_dot_product_attention( | |
| q, k, v, | |
| dropout_p=self.attn_drop.p, | |
| ) | |
| else: | |
| q = q * self.scale | |
| attn = q @ k.transpose(-2, -1) | |
| attn = attn.softmax(dim=-1) | |
| attn = self.attn_drop(attn) | |
| x = attn @ v | |
| x = x.transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class LayerScale(nn.Module): | |
| def __init__(self, dim, init_values=1e-5, inplace=False): | |
| super().__init__() | |
| self.inplace = inplace | |
| self.gamma = nn.Parameter(init_values * torch.ones(dim)) | |
| def forward(self, x): | |
| return x.mul_(self.gamma) if self.inplace else x * self.gamma | |
| class Mlp(nn.Module): | |
| """ MLP as used in Vision Transformer, MLP-Mixer and related networks | |
| """ | |
| def __init__( | |
| self, | |
| in_features, | |
| hidden_features=None, | |
| out_features=None, | |
| act_layer=nn.GELU, | |
| norm_layer=None, | |
| bias=True, | |
| drop=0., | |
| use_conv=False, | |
| ): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| bias = to_2tuple(bias) | |
| drop_probs = to_2tuple(drop) | |
| linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear | |
| self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0]) | |
| self.act = act_layer() | |
| self.drop1 = nn.Dropout(drop_probs[0]) | |
| self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() | |
| self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1]) | |
| self.drop2 = nn.Dropout(drop_probs[1]) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop1(x) | |
| x = self.fc2(x) | |
| x = self.drop2(x) | |
| return x | |
| class Block(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| num_heads, | |
| mlp_ratio=4., | |
| qkv_bias=False, | |
| qk_norm=False, | |
| proj_drop=0., | |
| attn_drop=0., | |
| init_values=None, | |
| drop_path=0., | |
| act_layer=nn.GELU, | |
| norm_layer=nn.LayerNorm, | |
| mlp_layer=Mlp, | |
| ): | |
| super().__init__() | |
| self.norm1 = norm_layer(dim) | |
| self.attn = Attention( | |
| dim, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| qk_norm=qk_norm, | |
| attn_drop=attn_drop, | |
| proj_drop=proj_drop, | |
| norm_layer=norm_layer, | |
| ) | |
| self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
| self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| self.mlp = mlp_layer( | |
| in_features=dim, | |
| hidden_features=int(dim * mlp_ratio), | |
| act_layer=act_layer, | |
| drop=proj_drop, | |
| ) | |
| self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
| self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| def forward(self, x): | |
| x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) | |
| x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) | |
| return x | |