Spaces:
Runtime error
Runtime error
| import random | |
| import math | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import smplx | |
| import copy | |
| from .motion_encoder import * | |
| # ----------- AE, VAE ------------- # | |
| class VAEConvZero(nn.Module): | |
| def __init__(self, args): | |
| super(VAEConvZero, self).__init__() | |
| self.encoder = VQEncoderV5(args) | |
| # self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
| self.decoder = VQDecoderV5(args) | |
| def forward(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| # print(pre_latent.shape) | |
| # embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) | |
| rec_pose = self.decoder(pre_latent) | |
| return { | |
| # "poses_feat":vq_latent, | |
| # "embedding_loss":embedding_loss, | |
| # "perplexity":perplexity, | |
| "rec_pose": rec_pose | |
| } | |
| class VAEConv(nn.Module): | |
| def __init__(self, args): | |
| super(VAEConv, self).__init__() | |
| self.encoder = VQEncoderV3(args) | |
| self.decoder = VQDecoderV3(args) | |
| self.fc_mu = nn.Linear(args.vae_length, args.vae_length) | |
| self.fc_logvar = nn.Linear(args.vae_length, args.vae_length) | |
| self.variational = args.variational | |
| def forward(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| mu, logvar = None, None | |
| if self.variational: | |
| mu = self.fc_mu(pre_latent) | |
| logvar = self.fc_logvar(pre_latent) | |
| pre_latent = reparameterize(mu, logvar) | |
| rec_pose = self.decoder(pre_latent) | |
| return { | |
| "poses_feat":pre_latent, | |
| "rec_pose": rec_pose, | |
| "pose_mu": mu, | |
| "pose_logvar": logvar, | |
| } | |
| def map2latent(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| if self.variational: | |
| mu = self.fc_mu(pre_latent) | |
| logvar = self.fc_logvar(pre_latent) | |
| pre_latent = reparameterize(mu, logvar) | |
| return pre_latent | |
| def decode(self, pre_latent): | |
| rec_pose = self.decoder(pre_latent) | |
| return rec_pose | |
| class VAESKConv(VAEConv): | |
| def __init__(self, args): | |
| super(VAESKConv, self).__init__(args) | |
| smpl_fname = args.data_path_1+'smplx_models/smplx/SMPLX_NEUTRAL_2020.npz' | |
| smpl_data = np.load(smpl_fname, encoding='latin1') | |
| parents = smpl_data['kintree_table'][0].astype(np.int32) | |
| edges = build_edge_topology(parents) | |
| self.encoder = LocalEncoder(args, edges) | |
| self.decoder = VQDecoderV3(args) | |
| class VAEConvMLP(VAEConv): | |
| def __init__(self, args): | |
| super(VAEConvMLP, self).__init__(args) | |
| self.encoder = PoseEncoderConv(args.vae_test_len, args.vae_test_dim, feature_length=args.vae_length) | |
| self.decoder = PoseDecoderConv(args.vae_test_len, args.vae_test_dim, feature_length=args.vae_length) | |
| class VAELSTM(VAEConv): | |
| def __init__(self, args): | |
| super(VAELSTM, self).__init__(args) | |
| pose_dim = args.vae_test_dim | |
| feature_length = args.vae_length | |
| self.encoder = PoseEncoderLSTM_Resnet(pose_dim, feature_length=feature_length) | |
| self.decoder = PoseDecoderLSTM(pose_dim, feature_length=feature_length) | |
| class VAETransformer(VAEConv): | |
| def __init__(self, args): | |
| super(VAETransformer, self).__init__(args) | |
| self.encoder = Encoder_TRANSFORMER(args) | |
| self.decoder = Decoder_TRANSFORMER(args) | |
| # ----------- VQVAE --------------- # | |
| class VQVAEConv(nn.Module): | |
| def __init__(self, args): | |
| super(VQVAEConv, self).__init__() | |
| self.encoder = VQEncoderV3(args) | |
| self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
| self.decoder = VQDecoderV3(args) | |
| def forward(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| # print(pre_latent.shape) | |
| embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) | |
| rec_pose = self.decoder(vq_latent) | |
| return { | |
| "poses_feat":vq_latent, | |
| "embedding_loss":embedding_loss, | |
| "perplexity":perplexity, | |
| "rec_pose": rec_pose | |
| } | |
| def map2index(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| index = self.quantizer.map2index(pre_latent) | |
| return index | |
| def map2latent(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| index = self.quantizer.map2index(pre_latent) | |
| z_q = self.quantizer.get_codebook_entry(index) | |
| return z_q | |
| def decode(self, index): | |
| z_q = self.quantizer.get_codebook_entry(index) | |
| rec_pose = self.decoder(z_q) | |
| return rec_pose | |
| class VQVAESKConv(VQVAEConv): | |
| def __init__(self, args): | |
| super(VQVAESKConv, self).__init__(args) | |
| smpl_fname = args.data_path_1+'smplx_models/smplx/SMPLX_NEUTRAL_2020.npz' | |
| smpl_data = np.load(smpl_fname, encoding='latin1') | |
| parents = smpl_data['kintree_table'][0].astype(np.int32) | |
| edges = build_edge_topology(parents) | |
| self.encoder = LocalEncoder(args, edges) | |
| class VQVAEConvStride(nn.Module): | |
| def __init__(self, args): | |
| super(VQVAEConvStride, self).__init__() | |
| self.encoder = VQEncoderV4(args) | |
| self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
| self.decoder = VQDecoderV4(args) | |
| def forward(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| # print(pre_latent.shape) | |
| embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) | |
| rec_pose = self.decoder(vq_latent) | |
| return { | |
| "poses_feat":vq_latent, | |
| "embedding_loss":embedding_loss, | |
| "perplexity":perplexity, | |
| "rec_pose": rec_pose | |
| } | |
| def map2index(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| index = self.quantizer.map2index(pre_latent) | |
| return index | |
| def map2latent(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| index = self.quantizer.map2index(pre_latent) | |
| z_q = self.quantizer.get_codebook_entry(index) | |
| return z_q | |
| def decode(self, index): | |
| z_q = self.quantizer.get_codebook_entry(index) | |
| rec_pose = self.decoder(z_q) | |
| return rec_pose | |
| class VQVAEConvZero(nn.Module): | |
| def __init__(self, args): | |
| super(VQVAEConvZero, self).__init__() | |
| self.encoder = VQEncoderV5(args) | |
| self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
| self.decoder = VQDecoderV5(args) | |
| def forward(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| # print(pre_latent.shape) | |
| embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) | |
| rec_pose = self.decoder(vq_latent) | |
| return { | |
| "poses_feat":vq_latent, | |
| "embedding_loss":embedding_loss, | |
| "perplexity":perplexity, | |
| "rec_pose": rec_pose | |
| } | |
| def map2index(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| index = self.quantizer.map2index(pre_latent) | |
| return index | |
| def map2latent(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| index = self.quantizer.map2index(pre_latent) | |
| z_q = self.quantizer.get_codebook_entry(index) | |
| return z_q | |
| def decode(self, index): | |
| z_q = self.quantizer.get_codebook_entry(index) | |
| rec_pose = self.decoder(z_q) | |
| return rec_pose | |
| class VAEConvZero(nn.Module): | |
| def __init__(self, args): | |
| super(VAEConvZero, self).__init__() | |
| self.encoder = VQEncoderV5(args) | |
| # self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
| self.decoder = VQDecoderV5(args) | |
| def forward(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| # print(pre_latent.shape) | |
| # embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) | |
| rec_pose = self.decoder(pre_latent) | |
| return { | |
| # "poses_feat":vq_latent, | |
| # "embedding_loss":embedding_loss, | |
| # "perplexity":perplexity, | |
| "rec_pose": rec_pose | |
| } | |
| # def map2index(self, inputs): | |
| # pre_latent = self.encoder(inputs) | |
| # index = self.quantizer.map2index(pre_latent) | |
| # return index | |
| # def map2latent(self, inputs): | |
| # pre_latent = self.encoder(inputs) | |
| # index = self.quantizer.map2index(pre_latent) | |
| # z_q = self.quantizer.get_codebook_entry(index) | |
| # return z_q | |
| # def decode(self, index): | |
| # z_q = self.quantizer.get_codebook_entry(index) | |
| # rec_pose = self.decoder(z_q) | |
| # return rec_pose | |
| class VQVAEConvZero3(nn.Module): | |
| def __init__(self, args): | |
| super(VQVAEConvZero3, self).__init__() | |
| self.encoder = VQEncoderV5(args) | |
| self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
| self.decoder = VQDecoderV5(args) | |
| def forward(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| # print(pre_latent.shape) | |
| embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) | |
| rec_pose = self.decoder(vq_latent) | |
| return { | |
| "poses_feat":vq_latent, | |
| "embedding_loss":embedding_loss, | |
| "perplexity":perplexity, | |
| "rec_pose": rec_pose | |
| } | |
| def map2index(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| index = self.quantizer.map2index(pre_latent) | |
| return index | |
| def map2latent(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| index = self.quantizer.map2index(pre_latent) | |
| z_q = self.quantizer.get_codebook_entry(index) | |
| return z_q | |
| def decode(self, index): | |
| z_q = self.quantizer.get_codebook_entry(index) | |
| rec_pose = self.decoder(z_q) | |
| return rec_pose | |
| class VQVAEConvZero2(nn.Module): | |
| def __init__(self, args): | |
| super(VQVAEConvZero2, self).__init__() | |
| self.encoder = VQEncoderV5(args) | |
| self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
| self.decoder = VQDecoderV7(args) | |
| def forward(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| # print(pre_latent.shape) | |
| embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) | |
| rec_pose = self.decoder(vq_latent) | |
| return { | |
| "poses_feat":vq_latent, | |
| "embedding_loss":embedding_loss, | |
| "perplexity":perplexity, | |
| "rec_pose": rec_pose | |
| } | |
| def map2index(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| index = self.quantizer.map2index(pre_latent) | |
| return index | |
| def map2latent(self, inputs): | |
| pre_latent = self.encoder(inputs) | |
| index = self.quantizer.map2index(pre_latent) | |
| z_q = self.quantizer.get_codebook_entry(index) | |
| return z_q | |
| def decode(self, index): | |
| z_q = self.quantizer.get_codebook_entry(index) | |
| rec_pose = self.decoder(z_q) | |
| return rec_pose | |
| class VQVAE2(nn.Module): | |
| def __init__(self, args): | |
| super(VQVAE2, self).__init__() | |
| # Bottom-level encoder and decoder | |
| args_bottom = copy.deepcopy(args) | |
| args_bottom.vae_layer = 2 | |
| self.bottom_encoder = VQEncoderV6(args_bottom) | |
| self.bottom_quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
| args_bottom.vae_test_dim = args.vae_test_dim | |
| self.bottom_decoder = VQDecoderV6(args_bottom) | |
| # Top-level encoder and decoder | |
| args_top = copy.deepcopy(args) | |
| args_top.vae_layer = 3 | |
| args_top.vae_test_dim = args.vae_length | |
| self.top_encoder = VQEncoderV3(args_top) # Adjust according to the top level's design | |
| self.quantize_conv_t = nn.Conv1d(args.vae_length+args.vae_length, args.vae_length, 1) | |
| self.top_quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
| # self.upsample_t_up = nn.Upsample(scale_factor=2, mode='nearest') | |
| layers = [ | |
| nn.Upsample(scale_factor=2, mode='nearest'), | |
| nn.Conv1d(args.vae_length, args.vae_length, kernel_size=3, stride=1, padding=1), | |
| nn.LeakyReLU(0.2, inplace=True), | |
| nn.Upsample(scale_factor=2, mode='nearest'), | |
| nn.Conv1d(args.vae_length, args.vae_length, kernel_size=3, stride=1, padding=1), | |
| nn.LeakyReLU(0.2, inplace=True), | |
| nn.Upsample(scale_factor=2, mode='nearest'), | |
| nn.Conv1d(args.vae_length, args.vae_length, kernel_size=3, stride=1, padding=1), | |
| nn.LeakyReLU(0.2, inplace=True) | |
| ] | |
| self.upsample_t= nn.Sequential(*layers) | |
| self.top_decoder = VQDecoderV3(args_top) # Adjust to handle top level features appropriately | |
| def forward(self, inputs): | |
| # Bottom-level processing | |
| enc_b = self.bottom_encoder(inputs) | |
| enc_t = self.top_encoder(enc_b) | |
| #print(enc_b.shape, enc_t.shape) | |
| top_embedding_loss, quant_t, _, top_perplexity = self.top_quantizer(enc_t) | |
| #print(quant_t.shape) | |
| dec_t = self.top_decoder(quant_t) | |
| #print(dec_t.shape) | |
| enc_b = torch.cat([dec_t, enc_b], dim=2).permute(0,2,1) | |
| #print(enc_b.shape) | |
| quant_b = self.quantize_conv_t(enc_b).permute(0,2,1) | |
| #print("5",quant_b.shape) | |
| bottom_embedding_loss, quant_b, _, bottom_perplexity = self.bottom_quantizer(quant_b) | |
| #print("6",quant_b.shape) | |
| upsample_t = self.upsample_t(quant_t.permute(0,2,1)).permute(0,2,1) | |
| #print("7",upsample_t.shape) | |
| quant = torch.cat([upsample_t, quant_b], 2) | |
| rec_pose = self.bottom_decoder(quant) | |
| # print(quant_t.shape, quant_b.shape, rec_pose.shape) | |
| return { | |
| "poses_feat_top": quant_t, | |
| "pose_feat_bottom": quant_b, | |
| "embedding_loss":top_embedding_loss+bottom_embedding_loss, | |
| #"perplexity":perplexity, | |
| "rec_pose": rec_pose | |
| } | |
| def map2index(self, inputs): | |
| enc_b = self.bottom_encoder(inputs) | |
| enc_t = self.top_encoder(enc_b) | |
| _, quant_t, _, _ = self.top_quantizer(enc_t) | |
| top_index = self.top_quantizer.map2index(enc_t) | |
| dec_t = self.top_decoder(quant_t) | |
| enc_b = torch.cat([dec_t, enc_b], dim=2).permute(0,2,1) | |
| #print(enc_b.shape) | |
| quant_b = self.quantize_conv_t(enc_b).permute(0,2,1) | |
| # quant_b = self.quantize_conv_t(enc_b) | |
| bottom_index = self.bottom_quantizer.map2index(quant_b) | |
| return top_index, bottom_index | |
| def get_top_laent(self, top_index): | |
| z_q_top = self.top_quantizer.get_codebook_entry(top_index) | |
| return z_q_top | |
| def map2latent(self, inputs): | |
| enc_b = self.bottom_encoder(inputs) | |
| enc_t = self.top_encoder(enc_b) | |
| _, quant_t, _, _ = self.top_quantizer(enc_t) | |
| top_index = self.top_quantizer.map2index(enc_t) | |
| dec_t = self.top_decoder(quant_t) | |
| enc_b = torch.cat([dec_t, enc_b], dim=2).permute(0,2,1) | |
| #print(enc_b.shape) | |
| quant_b = self.quantize_conv_t(enc_b).permute(0,2,1) | |
| # quant_b = self.quantize_conv_t(enc_b) | |
| bottom_index = self.bottom_quantizer.map2index(quant_b) | |
| z_q_top = self.top_quantizer.get_codebook_entry(top_index) | |
| z_q_bottom = self.bottom_quantizer.get_codebook_entry(bottom_index) | |
| return z_q_top, z_q_bottom | |
| def map2latent_top(self, inputs): | |
| enc_b = self.bottom_encoder(inputs) | |
| enc_t = self.top_encoder(enc_b) | |
| top_index = self.top_quantizer.map2index(enc_t) | |
| z_q_top = self.top_quantizer.get_codebook_entry(top_index) | |
| return z_q_top | |
| def decode(self, top_index, bottom_index): | |
| quant_t = self.top_quantizer.get_codebook_entry(top_index) | |
| quant_b = self.bottom_quantizer.get_codebook_entry(bottom_index) | |
| upsample_t = self.upsample_t(quant_t.permute(0,2,1)).permute(0,2,1) | |
| #print("7",upsample_t.shape) | |
| quant = torch.cat([upsample_t, quant_b], 2) | |
| rec_pose = self.bottom_decoder(quant) | |
| return rec_pose |