Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,564 Bytes
1da48bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import pdb
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .utils.layer import BasicBlock
from einops import rearrange
import pickle
from .timm_transformer.transformer import Block as mytimmBlock
class MDM(nn.Module):
def __init__(self, args):
super().__init__()
njoints=768
nfeats=1
latent_dim=512
ff_size=1024
num_layers=8
num_heads=4
dropout=0.1
ablation=None
activation="gelu"
legacy=False
data_rep='rot6d'
dataset='amass'
audio_feat_dim = 64
emb_trans_dec=False
audio_rep=''
n_seed=8
cond_mode=''
kargs={}
if args.vqvae_type == 'rvqvae':
njoints = 1536
elif args.vqvae_type == 'novqvae':
njoints = 312
self.args= args
self.legacy = legacy
self.njoints = njoints
self.nfeats = nfeats
self.data_rep = data_rep
self.latent_dim = latent_dim
self.ff_size = ff_size
self.num_layers = num_layers
self.num_heads = num_heads
self.dropout = dropout
self.ablation = ablation
self.activation = activation
self.action_emb = kargs.get('action_emb', None)
self.input_feats = self.njoints * self.nfeats
self.cond_mask_prob = kargs.get('cond_mask_prob', 0.3)
self.use_motionclip = args.use_motionclip
if args.audio_rep == 'onset+amplitude':
self.WavEncoder = WavEncoder(args.audio_f,audio_in=2)
self.audio_feat_dim = args.audio_f
self.text_encoder_body = nn.Linear(300, args.audio_f)
with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f:
self.lang_model = pickle.load(f)
pre_trained_embedding = self.lang_model.word_embedding_weights
self.text_pre_encoder_body = nn.Embedding.from_pretrained(torch.FloatTensor(pre_trained_embedding),freeze=args.t_fix_pre)
self.sequence_pos_encoder = PositionalEncoding(self.latent_dim, self.dropout)
self.emb_trans_dec = emb_trans_dec
self.cond_mode = cond_mode
self.num_head = 8
self.mytimmblocks = nn.ModuleList([
mytimmBlock(dim=self.latent_dim,num_heads=self.num_heads,mlp_ratio=self.ff_size//self.latent_dim,drop_path=self.dropout) #hidden是对应于输入x的维度,attn_heads应该是12,这里写1是为了方便调试流程
for _ in range(self.num_layers)])
self.embed_timestep = TimestepEmbedder(self.latent_dim, self.sequence_pos_encoder)
self.n_seed = n_seed
self.style_dim = 64
self.embed_style = nn.Linear(6, self.style_dim)
self.embed_text = nn.Linear(self.input_feats*4, self.latent_dim)
self.output_process = OutputProcess(self.data_rep, self.input_feats, self.latent_dim, self.njoints,
self.nfeats)
self.rel_pos = SinusoidalEmbeddings(self.latent_dim // self.num_head)
self.input_process = InputProcess(self.data_rep, self.input_feats , self.latent_dim)
self.input_process2 = nn.Linear(self.latent_dim * 2 + self.audio_feat_dim, self.latent_dim)
if self.use_motionclip:
self.input_process3 = nn.Linear(self.latent_dim + 512, self.latent_dim)
self.mix_audio_text = nn.Linear(args.audio_f+args.word_f,256)
def mask_cond(self, cond, force_mask=False):
bs, d = cond.shape
if force_mask:
return torch.zeros_like(cond)
elif self.training and self.cond_mask_prob > 0.:
mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_mask_prob).view(bs, 1) # 1-> use null_cond, 0-> use real cond
return cond * (1. - mask)
else:
return cond
def mask_cond_audio(self, cond, force_mask=False):
bs, d = cond.shape
if force_mask:
return torch.zeros_like(cond)
elif self.training and self.cond_mask_prob_audio > 0.:
mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_mask_prob_audio).view(bs, 1) # 1-> use null_cond, 0-> use real cond
return cond * (1. - mask)
else:
return cond
def forward(self, x, timesteps, y=None,uncond_info=False):
"""
x: [batch_size, njoints, nfeats, max_frames], denoted x_t in the paper
timesteps: [batch_size] (int)
seed: [batch_size, njoints, nfeats]
"""
_,_,_,noise_length = x.shape
y = y.copy()
bs, njoints, nfeats, nframes = x.shape # 300 ,1141, 1, 88
emb_t = self.embed_timestep(timesteps) # [1, bs, d], (1, 2, 256)
force_mask = y.get('uncond', False) # False
#force_mask=uncond_info
if self.n_seed != 0:
embed_text = self.embed_text(y['seed'].reshape(bs, -1)) # (bs, 256-64)
emb_seed = embed_text
audio_feat = self.WavEncoder(y['audio']).permute(1, 0, 2)
text_feat = self.text_pre_encoder_body(y['word'])
text_feat = self.text_encoder_body(text_feat).permute(1, 0, 2)
at_feat = torch.cat([audio_feat,text_feat],dim=2)
at_feat = self.mix_audio_text(at_feat)
at_feat = F.avg_pool1d(at_feat.permute(1,2,0), self.args.vqvae_squeeze_scale).permute(2,0,1)
# This part is test for timm transformer blocks
x = x.reshape(bs, njoints * nfeats, 1, nframes) # [300, 1141, 1, 88] -> [300, 1141, 1, 88]
# self-attention
x_ = self.input_process(x) # [300, 1141, 1, 88] -> [88, 300, 256]
# local-cross-attention
xseq = torch.cat((x_, at_feat), axis=2) # [88, 300, 256], [88, 300, 64] -> [88, 300, 320]
# all frames
embed_style_2 = (emb_seed + emb_t).repeat(nframes, 1, 1) # [300, 256] ,[1, 300, 256] -> [88, 300, 256]
xseq = torch.cat((embed_style_2, xseq), axis=2) # -> [88, 300, 576]
xseq = self.input_process2(xseq) #[88, 300, 576] -> [88, 300, 256]
if self.use_motionclip:
xseq = torch.cat((xseq, self.mask_cond(y['style_feature'],force_mask).unsqueeze(0).repeat(nframes, 1, 1)), axis = 2)
xseq = self.input_process3(xseq)
# 下面10行都是位置编码,感觉加了会好一点点,不知道是不是错觉
xseq = xseq.permute(1, 0, 2) # [88, 300, 256] -> [300, 88, 256]
xseq = xseq.view(bs, nframes, self.num_head, -1) # [300, 88, 256] -> [300, 88, 8, 32]
xseq = xseq.permute(0, 2, 1, 3) # [300, 88, 8, 32] -> [300, 8, 88, 32]
xseq = xseq.reshape(bs * self.num_head, nframes, -1) # [300, 8, 88, 32] -> [2400, 88, 32]
pos_emb = self.rel_pos(xseq) # (88, 32)
xseq, _ = apply_rotary_pos_emb(xseq, xseq, pos_emb) # [2400, 88, 32]
xseq_rpe = xseq.reshape(bs, self.num_head, nframes, -1) # [300, 8, 88, 32]
xseq = xseq_rpe.permute(0, 2, 1, 3) # [300, 8, 88, 32] -> [300, 88, 8, 32]
xseq = xseq.view(bs, nframes, -1) # [300, 88, 8, 32] -> [300, 88, 256]
for block in self.mytimmblocks:
xseq = block(xseq)
xseq = xseq.permute(1, 0, 2) # [300, 88, 256] -> [88 ,300, 256]
output = xseq
output = self.output_process(output) # [88, 300, 256] -> [300, 1141, 1, 88]
return output[...,:noise_length]
@staticmethod
def apply_rotary(x, sinusoidal_pos):
sin, cos = sinusoidal_pos
x1, x2 = x[..., 0::2], x[..., 1::2]
# 如果是旋转query key的话,下面这个直接cat就行,因为要进行矩阵乘法,最终会在这个维度求和。(只要保持query和key的最后一个dim的每一个位置对应上就可以)
# torch.cat([x1 * cos - x2 * sin, x2 * cos + x1 * sin], dim=-1)
# 如果是旋转value的话,下面这个stack后再flatten才可以,因为训练好的模型最后一个dim是两两之间交替的。
return torch.stack([x1 * cos - x2 * sin, x2 * cos + x1 * sin], dim=-1).flatten(-2, -1)
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model) # (5000, 128)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) # (5000, 1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
# not used in the final model
x = x + self.pe[:x.shape[0], :]
return self.dropout(x)
class TimestepEmbedder(nn.Module):
def __init__(self, latent_dim, sequence_pos_encoder):
super().__init__()
self.latent_dim = latent_dim
self.sequence_pos_encoder = sequence_pos_encoder
time_embed_dim = self.latent_dim
self.time_embed = nn.Sequential(
nn.Linear(self.latent_dim, time_embed_dim),
nn.SiLU(),
nn.Linear(time_embed_dim, time_embed_dim),
)
def forward(self, timesteps):
return self.time_embed(self.sequence_pos_encoder.pe[timesteps]).permute(1, 0, 2)
class InputProcess(nn.Module):
def __init__(self, data_rep, input_feats, latent_dim):
super().__init__()
self.data_rep = data_rep
self.input_feats = input_feats
self.latent_dim = latent_dim
self.poseEmbedding = nn.Linear(self.input_feats, self.latent_dim)
if self.data_rep == 'rot_vel':
self.velEmbedding = nn.Linear(self.input_feats, self.latent_dim)
def forward(self, x):
bs, njoints, nfeats, nframes = x.shape
x = x.permute((3, 0, 1, 2)).reshape(nframes, bs, njoints*nfeats)
if self.data_rep in ['rot6d', 'xyz', 'hml_vec']:
x = self.poseEmbedding(x) # [seqlen, bs, d]
return x
elif self.data_rep == 'rot_vel':
first_pose = x[[0]] # [1, bs, 150]
first_pose = self.poseEmbedding(first_pose) # [1, bs, d]
vel = x[1:] # [seqlen-1, bs, 150]
vel = self.velEmbedding(vel) # [seqlen-1, bs, d]
return torch.cat((first_pose, vel), axis=0) # [seqlen, bs, d]
else:
raise ValueError
class OutputProcess(nn.Module):
def __init__(self, data_rep, input_feats, latent_dim, njoints, nfeats):
super().__init__()
self.data_rep = data_rep
self.input_feats = input_feats
self.latent_dim = latent_dim
self.njoints = njoints
self.nfeats = nfeats
self.poseFinal = nn.Linear(self.latent_dim, self.input_feats)
if self.data_rep == 'rot_vel':
self.velFinal = nn.Linear(self.latent_dim, self.input_feats)
def forward(self, output):
nframes, bs, d = output.shape
if self.data_rep in ['rot6d', 'xyz', 'hml_vec']:
output = self.poseFinal(output) # [88, 300, 256] -> [88, 300, 1141]
elif self.data_rep == 'rot_vel':
first_pose = output[[0]] # [1, bs, d]
first_pose = self.poseFinal(first_pose) # [1, bs, 150]
vel = output[1:] # [seqlen-1, bs, d]
vel = self.velFinal(vel) # [seqlen-1, bs, 150]
output = torch.cat((first_pose, vel), axis=0) # [seqlen, bs, 150]
else:
raise ValueError
output = output.reshape(nframes, bs, self.njoints, self.nfeats)
output = output.permute(1, 2, 3, 0) # [bs, njoints, nfeats, nframes]
return output
class WavEncoder(nn.Module):
def __init__(self, out_dim, audio_in=1):
super().__init__()
self.out_dim = out_dim
self.feat_extractor = nn.Sequential(
BasicBlock(audio_in, out_dim//4, 15, 5, first_dilation=1700, downsample=True),
BasicBlock(out_dim//4, out_dim//4, 15, 6, first_dilation=0, downsample=True),
BasicBlock(out_dim//4, out_dim//4, 15, 1, first_dilation=7, ),
BasicBlock(out_dim//4, out_dim//2, 15, 6, first_dilation=0, downsample=True),
BasicBlock(out_dim//2, out_dim//2, 15, 1, first_dilation=7),
BasicBlock(out_dim//2, out_dim, 15, 3, first_dilation=0,downsample=True),
)
def forward(self, wav_data):
if wav_data.dim() == 2:
wav_data = wav_data.unsqueeze(1)
else:
wav_data = wav_data.transpose(1, 2)
out = self.feat_extractor(wav_data)
return out.transpose(1, 2)
class SinusoidalEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
def forward(self, x):
n = x.shape[-2]
t = torch.arange(n, device = x.device).type_as(self.inv_freq)
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
return torch.cat((freqs, freqs), dim=-1)
def rotate_half(x):
x = rearrange(x, 'b ... (r d) -> b (...) r d', r = 2)
x1, x2 = x.unbind(dim = -2)
return torch.cat((-x2, x1), dim = -1)
def apply_rotary_pos_emb(q, k, freqs):
q, k = map(lambda t: (t * freqs.cos()) + (rotate_half(t) * freqs.sin()), (q, k))
return q, k
if __name__ == '__main__':
'''
cd ./main/model
python mdm.py
'''
n_frames = 240
n_seed = 8
model = MDM(modeltype='', njoints=1140, nfeats=1, cond_mode = 'cross_local_attention5_style1', action_emb='tensor', audio_rep='mfcc',
arch='mytrans_enc', latent_dim=256, n_seed=n_seed, cond_mask_prob=0.1)
x = torch.randn(2, 1140, 1, 88)
t = torch.tensor([12, 85])
model_kwargs_ = {'y': {}}
model_kwargs_['y']['mask'] = (torch.zeros([1, 1, 1, n_frames]) < 1) # [..., n_seed:]
model_kwargs_['y']['audio'] = torch.randn(2, 88, 13).permute(1, 0, 2) # [n_seed:, ...]
model_kwargs_['y']['style'] = torch.randn(2, 6)
model_kwargs_['y']['mask_local'] = torch.ones(2, 88).bool()
model_kwargs_['y']['seed'] = x[..., 0:n_seed]
y = model(x, t, model_kwargs_['y'])
print(y.shape)
|