File size: 14,564 Bytes
1da48bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import pdb

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .utils.layer import BasicBlock
from einops import rearrange
import pickle
from .timm_transformer.transformer import Block as mytimmBlock

class MDM(nn.Module):
    def __init__(self, args):
        super().__init__()

    
        njoints=768
        nfeats=1
        latent_dim=512
        ff_size=1024
        num_layers=8
        num_heads=4
        dropout=0.1
        ablation=None
        activation="gelu"
        legacy=False
        data_rep='rot6d'
        dataset='amass'
        audio_feat_dim = 64
        emb_trans_dec=False
        audio_rep=''
        n_seed=8
        cond_mode=''
        kargs={}
    
        if args.vqvae_type == 'rvqvae':
            njoints = 1536
        elif args.vqvae_type == 'novqvae':
            njoints = 312
        self.args= args
        self.legacy = legacy
        self.njoints = njoints
        self.nfeats = nfeats
        self.data_rep = data_rep

        self.latent_dim = latent_dim

        self.ff_size = ff_size
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.dropout = dropout

        self.ablation = ablation
        self.activation = activation
        self.action_emb = kargs.get('action_emb', None)

        self.input_feats = self.njoints * self.nfeats

        self.cond_mask_prob = kargs.get('cond_mask_prob', 0.3)
        self.use_motionclip = args.use_motionclip

        if args.audio_rep == 'onset+amplitude':
            self.WavEncoder = WavEncoder(args.audio_f,audio_in=2)
        self.audio_feat_dim = args.audio_f
        
        self.text_encoder_body = nn.Linear(300, args.audio_f) 
        
        with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f:
            self.lang_model = pickle.load(f)
            pre_trained_embedding = self.lang_model.word_embedding_weights
        self.text_pre_encoder_body = nn.Embedding.from_pretrained(torch.FloatTensor(pre_trained_embedding),freeze=args.t_fix_pre)
        
        
        

        self.sequence_pos_encoder = PositionalEncoding(self.latent_dim, self.dropout)
        self.emb_trans_dec = emb_trans_dec

        self.cond_mode = cond_mode
        self.num_head = 8
        
        self.mytimmblocks = nn.ModuleList([
            mytimmBlock(dim=self.latent_dim,num_heads=self.num_heads,mlp_ratio=self.ff_size//self.latent_dim,drop_path=self.dropout) #hidden是对应于输入x的维度,attn_heads应该是12,这里写1是为了方便调试流程
                for _ in range(self.num_layers)])
            
        self.embed_timestep = TimestepEmbedder(self.latent_dim, self.sequence_pos_encoder)
        self.n_seed = n_seed
        

        self.style_dim = 64
        self.embed_style = nn.Linear(6, self.style_dim)
        self.embed_text = nn.Linear(self.input_feats*4, self.latent_dim)

            

        self.output_process = OutputProcess(self.data_rep, self.input_feats, self.latent_dim, self.njoints,
                                            self.nfeats)


        self.rel_pos = SinusoidalEmbeddings(self.latent_dim // self.num_head)
        self.input_process = InputProcess(self.data_rep, self.input_feats , self.latent_dim)
        self.input_process2 = nn.Linear(self.latent_dim * 2 + self.audio_feat_dim, self.latent_dim)
        if self.use_motionclip:
            self.input_process3 = nn.Linear(self.latent_dim + 512, self.latent_dim)
        
        self.mix_audio_text = nn.Linear(args.audio_f+args.word_f,256)

            

    def mask_cond(self, cond, force_mask=False):
        bs, d = cond.shape
        if force_mask:
            return torch.zeros_like(cond)
        elif self.training and self.cond_mask_prob > 0.:
            mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_mask_prob).view(bs, 1)  # 1-> use null_cond, 0-> use real cond
            return cond * (1. - mask)
                
        else:
            return cond

    def mask_cond_audio(self, cond, force_mask=False):
        bs, d = cond.shape
        if force_mask:
            return torch.zeros_like(cond)
        elif self.training and self.cond_mask_prob_audio > 0.:
            mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_mask_prob_audio).view(bs, 1)  # 1-> use null_cond, 0-> use real cond
            return cond * (1. - mask)             
        else:
            return cond


    def forward(self, x, timesteps, y=None,uncond_info=False):
        """
        x: [batch_size, njoints, nfeats, max_frames], denoted x_t in the paper
        timesteps: [batch_size] (int)
        seed: [batch_size, njoints, nfeats]
        """
        _,_,_,noise_length = x.shape
        y = y.copy()
       
        bs, njoints, nfeats, nframes = x.shape      # 300 ,1141, 1, 88
        emb_t = self.embed_timestep(timesteps)  # [1, bs, d], (1, 2, 256)

        force_mask = y.get('uncond', False)  # False
        #force_mask=uncond_info
        
        if self.n_seed != 0:
            embed_text = self.embed_text(y['seed'].reshape(bs, -1))       # (bs, 256-64)
            emb_seed = embed_text

        audio_feat = self.WavEncoder(y['audio']).permute(1, 0, 2)
        text_feat = self.text_pre_encoder_body(y['word'])
        text_feat = self.text_encoder_body(text_feat).permute(1, 0, 2)

        at_feat = torch.cat([audio_feat,text_feat],dim=2)
        at_feat = self.mix_audio_text(at_feat)
        at_feat = F.avg_pool1d(at_feat.permute(1,2,0), self.args.vqvae_squeeze_scale).permute(2,0,1)  
        
        # This part is test for timm transformer blocks
        x = x.reshape(bs, njoints * nfeats, 1, nframes)  # [300, 1141, 1, 88] -> [300, 1141, 1, 88]
        # self-attention
        x_ = self.input_process(x)  # [300, 1141, 1, 88] -> [88, 300, 256]

        # local-cross-attention

        xseq = torch.cat((x_, at_feat), axis=2)  # [88, 300, 256], [88, 300, 64] -> [88, 300, 320]
        # all frames
        embed_style_2 = (emb_seed + emb_t).repeat(nframes, 1, 1)  # [300, 256] ,[1, 300, 256] -> [88, 300, 256]
        xseq = torch.cat((embed_style_2, xseq), axis=2)  # -> [88, 300, 576]
        xseq = self.input_process2(xseq)    #[88, 300, 576] -> [88, 300, 256]
        
        if self.use_motionclip:
            xseq = torch.cat((xseq, self.mask_cond(y['style_feature'],force_mask).unsqueeze(0).repeat(nframes, 1, 1)), axis = 2)
            xseq = self.input_process3(xseq)
        
        
        # 下面10行都是位置编码,感觉加了会好一点点,不知道是不是错觉
        xseq = xseq.permute(1, 0, 2)  # [88, 300, 256] -> [300, 88, 256]
        xseq = xseq.view(bs, nframes, self.num_head, -1) # [300, 88, 256] -> [300, 88, 8, 32]
        xseq = xseq.permute(0, 2, 1, 3)  # [300, 88, 8, 32] -> [300, 8, 88, 32]
        xseq = xseq.reshape(bs * self.num_head, nframes, -1) # [300, 8, 88, 32] -> [2400, 88, 32]
        pos_emb = self.rel_pos(xseq)  # (88, 32)
        xseq, _ = apply_rotary_pos_emb(xseq, xseq, pos_emb) # [2400, 88, 32]
        xseq_rpe = xseq.reshape(bs, self.num_head, nframes, -1) # [300, 8, 88, 32]
        xseq = xseq_rpe.permute(0, 2, 1, 3)  # [300, 8, 88, 32] -> [300, 88, 8, 32]
        xseq = xseq.view(bs, nframes, -1)   # [300, 88, 8, 32] -> [300, 88, 256]
        
        for block in self.mytimmblocks:
            xseq = block(xseq)
        
        xseq = xseq.permute(1, 0, 2)    # [300, 88, 256] -> [88 ,300, 256]
        output = xseq                


        output = self.output_process(output)  # [88, 300, 256] -> [300, 1141, 1, 88]
        return output[...,:noise_length]


    @staticmethod
    def apply_rotary(x, sinusoidal_pos):
        sin, cos = sinusoidal_pos
        x1, x2 = x[..., 0::2], x[..., 1::2]
        # 如果是旋转query key的话,下面这个直接cat就行,因为要进行矩阵乘法,最终会在这个维度求和。(只要保持query和key的最后一个dim的每一个位置对应上就可以)
        # torch.cat([x1 * cos - x2 * sin, x2 * cos + x1 * sin], dim=-1)
        # 如果是旋转value的话,下面这个stack后再flatten才可以,因为训练好的模型最后一个dim是两两之间交替的。
        return torch.stack([x1 * cos - x2 * sin, x2 * cos + x1 * sin], dim=-1).flatten(-2, -1)



class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)      # (5000, 128)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)     # (5000, 1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)

        self.register_buffer('pe', pe)

    def forward(self, x):
        # not used in the final model
        x = x + self.pe[:x.shape[0], :]
        return self.dropout(x)



class TimestepEmbedder(nn.Module):
    def __init__(self, latent_dim, sequence_pos_encoder):
        super().__init__()
        self.latent_dim = latent_dim
        self.sequence_pos_encoder = sequence_pos_encoder

        time_embed_dim = self.latent_dim
        self.time_embed = nn.Sequential(
            nn.Linear(self.latent_dim, time_embed_dim),
            nn.SiLU(),
            nn.Linear(time_embed_dim, time_embed_dim),
        )

    def forward(self, timesteps):
        return self.time_embed(self.sequence_pos_encoder.pe[timesteps]).permute(1, 0, 2)


class InputProcess(nn.Module):
    def __init__(self, data_rep, input_feats, latent_dim):
        super().__init__()
        self.data_rep = data_rep
        self.input_feats = input_feats
        self.latent_dim = latent_dim
        self.poseEmbedding = nn.Linear(self.input_feats, self.latent_dim)
        if self.data_rep == 'rot_vel':
            self.velEmbedding = nn.Linear(self.input_feats, self.latent_dim)

    def forward(self, x):
        bs, njoints, nfeats, nframes = x.shape
        x = x.permute((3, 0, 1, 2)).reshape(nframes, bs, njoints*nfeats)

        if self.data_rep in ['rot6d', 'xyz', 'hml_vec']:
            x = self.poseEmbedding(x)  # [seqlen, bs, d]
            return x
        elif self.data_rep == 'rot_vel':
            first_pose = x[[0]]  # [1, bs, 150]
            first_pose = self.poseEmbedding(first_pose)  # [1, bs, d]
            vel = x[1:]  # [seqlen-1, bs, 150]
            vel = self.velEmbedding(vel)  # [seqlen-1, bs, d]
            return torch.cat((first_pose, vel), axis=0)  # [seqlen, bs, d]
        else:
            raise ValueError


class OutputProcess(nn.Module):
    def __init__(self, data_rep, input_feats, latent_dim, njoints, nfeats):
        super().__init__()
        self.data_rep = data_rep
        self.input_feats = input_feats
        self.latent_dim = latent_dim
        self.njoints = njoints
        self.nfeats = nfeats
        self.poseFinal = nn.Linear(self.latent_dim, self.input_feats)
        if self.data_rep == 'rot_vel':
            self.velFinal = nn.Linear(self.latent_dim, self.input_feats)

    def forward(self, output):
        nframes, bs, d = output.shape
        if self.data_rep in ['rot6d', 'xyz', 'hml_vec']:
            output = self.poseFinal(output)  # [88, 300, 256] -> [88, 300, 1141]
        elif self.data_rep == 'rot_vel':
            first_pose = output[[0]]  # [1, bs, d]
            first_pose = self.poseFinal(first_pose)  # [1, bs, 150]
            vel = output[1:]  # [seqlen-1, bs, d]
            vel = self.velFinal(vel)  # [seqlen-1, bs, 150]
            output = torch.cat((first_pose, vel), axis=0)  # [seqlen, bs, 150]
        else:
            raise ValueError
        output = output.reshape(nframes, bs, self.njoints, self.nfeats)
        output = output.permute(1, 2, 3, 0)  # [bs, njoints, nfeats, nframes]
        return output


class WavEncoder(nn.Module):
    def __init__(self, out_dim, audio_in=1):
        super().__init__() 
        self.out_dim = out_dim
        self.feat_extractor = nn.Sequential( 
                BasicBlock(audio_in, out_dim//4, 15, 5, first_dilation=1700, downsample=True),
                BasicBlock(out_dim//4, out_dim//4, 15, 6, first_dilation=0, downsample=True),
                BasicBlock(out_dim//4, out_dim//4, 15, 1, first_dilation=7, ),
                BasicBlock(out_dim//4, out_dim//2, 15, 6, first_dilation=0, downsample=True),
                BasicBlock(out_dim//2, out_dim//2, 15, 1, first_dilation=7),
                BasicBlock(out_dim//2, out_dim, 15, 3,  first_dilation=0,downsample=True),     
            )
    def forward(self, wav_data):
        if wav_data.dim() == 2:
            wav_data = wav_data.unsqueeze(1) 
        else:
            wav_data = wav_data.transpose(1, 2)
        out = self.feat_extractor(wav_data)
        return out.transpose(1, 2)

class SinusoidalEmbeddings(nn.Module):
    def __init__(self, dim):
        super().__init__()
        inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer('inv_freq', inv_freq)

    def forward(self, x):
        n = x.shape[-2]
        t = torch.arange(n, device = x.device).type_as(self.inv_freq)
        freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
        return torch.cat((freqs, freqs), dim=-1)

def rotate_half(x):
    x = rearrange(x, 'b ... (r d) -> b (...) r d', r = 2)
    x1, x2 = x.unbind(dim = -2)
    return torch.cat((-x2, x1), dim = -1)

def apply_rotary_pos_emb(q, k, freqs):
    q, k = map(lambda t: (t * freqs.cos()) + (rotate_half(t) * freqs.sin()), (q, k))
    return q, k

if __name__ == '__main__':
    '''
    cd ./main/model
    python mdm.py
    '''
    n_frames = 240

    n_seed = 8

    model = MDM(modeltype='', njoints=1140, nfeats=1, cond_mode = 'cross_local_attention5_style1', action_emb='tensor', audio_rep='mfcc',
                arch='mytrans_enc', latent_dim=256, n_seed=n_seed, cond_mask_prob=0.1)

    x = torch.randn(2, 1140, 1, 88)
    t = torch.tensor([12, 85])

    model_kwargs_ = {'y': {}}
    model_kwargs_['y']['mask'] = (torch.zeros([1, 1, 1, n_frames]) < 1)     # [..., n_seed:]
    model_kwargs_['y']['audio'] = torch.randn(2, 88, 13).permute(1, 0, 2)       # [n_seed:, ...]
    model_kwargs_['y']['style'] = torch.randn(2, 6)
    model_kwargs_['y']['mask_local'] = torch.ones(2, 88).bool()
    model_kwargs_['y']['seed'] = x[..., 0:n_seed]
    y = model(x, t, model_kwargs_['y'])
    print(y.shape)