File size: 919 Bytes
7f940ea
 
 
 
 
c3f8843
 
 
 
7f940ea
 
 
 
 
 
 
 
 
 
 
 
b8a12ed
724f77f
858ca50
724f77f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import os
import gradio as gr
import numpy as np


io1 = gr.Interface.load("huggingface/facebook/xm_transformer_s2ut_en-hk")
io2 = gr.Interface.load("huggingface/facebook/xm_transformer_s2ut_hk-en")
io3 = gr.Interface.load("huggingface/facebook/xm_transformer_unity_en-hk")
io4 = gr.Interface.load("huggingface/facebook/xm_transformer_unity_hk-en")
   
def inference(audio, model):
    if model == "xm_transformer_s2ut_en-hk":
        out_audio = io1(audio)
    elif model == "xm_transformer_s2ut_hk-en":
        out_audio = io2(audio)
    elif model == "xm_transformer_unity_en-hk":
        out_audio = io3(audio)
    else:
        out_audio = io4(audio)
    return out_audio 

model = gr.Dropdown(choices=["xm_transformer_unity_en-hk", "xm_transformer_unity_hk-en", "xm_transformer_s2ut_en-hk", "xm_transformer_s2ut_hk-en"])

demo = gr.Interface(fn=inference, inputs=["audio", model], outputs=["audio"])
demo.launch()