Spaces:
Running
on
Zero
Running
on
Zero
robert
commited on
Commit
·
90af0e7
1
Parent(s):
ba33077
Shiping spaces model
Browse files- app.py +169 -12
- askbakingtop.json +0 -0
app.py
CHANGED
|
@@ -1,22 +1,179 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
)
|
| 10 |
-
except subprocess.CalledProcessError as e:
|
| 11 |
-
print(f"Failed to install packages from {requirements_file}: {e}")
|
| 12 |
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 22 |
demo.launch()
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
from threading import Thread
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import spaces
|
| 8 |
+
import torch
|
| 9 |
+
from langchain.schema import AIMessage, HumanMessage
|
| 10 |
+
from langchain_openai import ChatOpenAI
|
| 11 |
+
from pydantic import BaseModel, SecretStr
|
| 12 |
+
from transformers import (
|
| 13 |
+
AutoModelForCausalLM,
|
| 14 |
+
AutoTokenizer,
|
| 15 |
+
StoppingCriteria,
|
| 16 |
+
StoppingCriteriaList,
|
| 17 |
+
TextIteratorStreamer,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained("ContextualAI/archangel_sft-kto_llama30b")
|
| 21 |
+
model = AutoModelForCausalLM.from_pretrained("ContextualAI/archangel_sft-kto_llama30b")
|
| 22 |
+
model = model.to("cuda:0")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class OAAPIKey(BaseModel):
|
| 26 |
+
openai_api_key: SecretStr
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def set_openai_api_key(api_key: SecretStr):
|
| 30 |
+
os.environ["OPENAI_API_KEY"] = api_key.get_secret_value()
|
| 31 |
+
llm = ChatOpenAI(temperature=1.0, model="gpt-3.5-turbo-0125")
|
| 32 |
+
return llm
|
| 33 |
|
| 34 |
|
| 35 |
+
class StopOnSequence(StoppingCriteria):
|
| 36 |
+
def __init__(self, sequence, tokenizer):
|
| 37 |
+
self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
|
| 38 |
+
self.sequence_len = len(self.sequence_ids)
|
| 39 |
+
|
| 40 |
+
def __call__(
|
| 41 |
+
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
|
| 42 |
+
) -> bool:
|
| 43 |
+
if input_ids.shape[1] < self.sequence_len:
|
| 44 |
+
return False
|
| 45 |
+
return (
|
| 46 |
+
(
|
| 47 |
+
input_ids[0, -self.sequence_len:]
|
| 48 |
+
== torch.tensor(self.sequence_ids, device=input_ids.device)
|
| 49 |
+
)
|
| 50 |
+
.all()
|
| 51 |
+
.item()
|
| 52 |
)
|
|
|
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
+
@spaces.GPU(duration=120)
|
| 56 |
+
def spaces_model_predict(message: str, history: list[tuple[str, str]]):
|
| 57 |
+
history_transformer_format = history + [[message, ""]]
|
| 58 |
+
stop = StopOnSequence("<|human|>", tokenizer)
|
| 59 |
+
|
| 60 |
+
messages = "".join(
|
| 61 |
+
[
|
| 62 |
+
"".join(["\n<human>:" + item[0], "\n<ai>:" + item[1]])
|
| 63 |
+
for item in history_transformer_format
|
| 64 |
+
]
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
|
| 68 |
+
streamer = TextIteratorStreamer(
|
| 69 |
+
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
| 70 |
+
)
|
| 71 |
+
generate_kwargs = dict(
|
| 72 |
+
model_inputs,
|
| 73 |
+
streamer=streamer,
|
| 74 |
+
max_new_tokens=512,
|
| 75 |
+
do_sample=True,
|
| 76 |
+
top_p=0.95,
|
| 77 |
+
top_k=1000,
|
| 78 |
+
temperature=1.0,
|
| 79 |
+
num_beams=1,
|
| 80 |
+
stopping_criteria=StoppingCriteriaList([stop]),
|
| 81 |
+
)
|
| 82 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 83 |
+
t.start()
|
| 84 |
+
|
| 85 |
+
partial_message = ""
|
| 86 |
+
for new_token in streamer:
|
| 87 |
+
if new_token != "<":
|
| 88 |
+
partial_message += new_token
|
| 89 |
+
return partial_message
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def predict(
|
| 93 |
+
message: str,
|
| 94 |
+
chat_history_openai: list[tuple[str, str]],
|
| 95 |
+
chat_history_spaces: list[tuple[str, str]],
|
| 96 |
+
openai_api_key: SecretStr,
|
| 97 |
+
):
|
| 98 |
+
openai_key_model = OAAPIKey(openai_api_key=openai_api_key)
|
| 99 |
+
openai_llm = set_openai_api_key(api_key=openai_key_model.openai_api_key)
|
| 100 |
|
| 101 |
+
# OpenAI
|
| 102 |
+
history_langchain_format_openai = []
|
| 103 |
+
for human, ai in chat_history_openai:
|
| 104 |
+
history_langchain_format_openai.append(HumanMessage(content=human))
|
| 105 |
+
history_langchain_format_openai.append(AIMessage(content=ai))
|
| 106 |
+
history_langchain_format_openai.append(HumanMessage(content=message))
|
| 107 |
|
| 108 |
+
openai_response = openai_llm.invoke(input=history_langchain_format_openai)
|
| 109 |
+
|
| 110 |
+
# Spaces Model
|
| 111 |
+
spaces_model_response = spaces_model_predict(message, chat_history_spaces)
|
| 112 |
+
|
| 113 |
+
chat_history_openai.append((message, openai_response.content))
|
| 114 |
+
chat_history_spaces.append((message, spaces_model_response))
|
| 115 |
+
return "", chat_history_openai, chat_history_spaces
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
with open("askbakingtop.json", "r") as file:
|
| 119 |
+
ask_baking_msgs = json.load(file)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
with gr.Blocks() as demo:
|
| 123 |
+
with gr.Row():
|
| 124 |
+
with gr.Column(scale=1):
|
| 125 |
+
openai_api_key = gr.Textbox(
|
| 126 |
+
label="Please enter your OpenAI API key",
|
| 127 |
+
type="password",
|
| 128 |
+
elem_id="lets-chat-openai-api-key",
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
with gr.Row():
|
| 132 |
+
options = [ask["history"] for ask in random.sample(ask_baking_msgs, k=3)]
|
| 133 |
+
msg = gr.Dropdown(
|
| 134 |
+
options,
|
| 135 |
+
label="Please enter your message",
|
| 136 |
+
interactive=True,
|
| 137 |
+
multiselect=False,
|
| 138 |
+
allow_custom_value=True
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
with gr.Row():
|
| 142 |
+
with gr.Column(scale=1):
|
| 143 |
+
chatbot_openai = gr.Chatbot(label="OpenAI Chatbot 🏢")
|
| 144 |
+
with gr.Column(scale=1):
|
| 145 |
+
chatbot_spaces = gr.Chatbot(
|
| 146 |
+
label="Your own fine-tuned preference optimized Chatbot 💪"
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
with gr.Row():
|
| 150 |
+
submit_button = gr.Button("Submit")
|
| 151 |
+
|
| 152 |
+
with gr.Row():
|
| 153 |
+
clear = gr.ClearButton([msg])
|
| 154 |
+
|
| 155 |
+
def respond(
|
| 156 |
+
message: str,
|
| 157 |
+
chat_history_openai: list[tuple[str, str]],
|
| 158 |
+
chat_history_spaces: list[tuple[str, str]],
|
| 159 |
+
openai_api_key: SecretStr,
|
| 160 |
+
):
|
| 161 |
+
return predict(
|
| 162 |
+
message=message,
|
| 163 |
+
chat_history_openai=chat_history_openai,
|
| 164 |
+
chat_history_spaces=chat_history_spaces,
|
| 165 |
+
openai_api_key=openai_api_key,
|
| 166 |
+
)
|
| 167 |
|
| 168 |
+
submit_button.click(
|
| 169 |
+
fn=respond,
|
| 170 |
+
inputs=[
|
| 171 |
+
msg,
|
| 172 |
+
chatbot_openai,
|
| 173 |
+
chatbot_spaces,
|
| 174 |
+
openai_api_key,
|
| 175 |
+
],
|
| 176 |
+
outputs=[msg, chatbot_openai, chatbot_spaces],
|
| 177 |
+
)
|
| 178 |
|
|
|
|
| 179 |
demo.launch()
|
askbakingtop.json
ADDED
|
File without changes
|