File size: 3,556 Bytes
aa5f929 9558232 aa5f929 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
from transformers import pipeline
import gradio as gr
from textblob import TextBlob
import numpy as np
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
from afinn import Afinn
#VADER e AFINN
nltk.download('vader_lexicon')
vader = SentimentIntensityAnalyzer()
afinn = Afinn()
#Hugging Face
bert_model = pipeline("sentiment-analysis", model="bert-base-uncased")
#BERT Large
bert_large_model = pipeline("sentiment-analysis", model="bert-large-uncased")
distilbert_model = pipeline("sentiment-analysis", model="distilbert-base-uncased")
siebert_model = pipeline("sentiment-analysis", model="siebert/sentiment-roberta-large-english")
def normalize_score(score, range_min, range_max):
return (score - range_min) / (range_max - range_min)
def analyze_with_bert(text):
analysis = bert_model(text)
label, score = map_label(analysis[0]['label']), analysis[0]['score']
return label, score
def analyze_with_bert_large(text):
analysis = bert_large_model(text)
label, score = map_label(analysis[0]['label']), analysis[0]['score']
return label, score
def analyze_with_distilbert(text):
analysis = distilbert_model(text)
label, score = map_label(analysis[0]['label']), analysis[0]['score']
return label, score
def analyze_with_siebert(text):
analysis = siebert_model(text)
return analysis[0]['label'], analysis[0]['score']
def analyze_with_textblob(text):
analysis = TextBlob(text).sentiment
label = "POSITIVE" if analysis.polarity > 0 else "NEGATIVE" if analysis.polarity < 0 else "NEUTRAL"
normalized_score = normalize_score(analysis.polarity, -1, 1)
return label, normalized_score
def analyze_with_vader(text):
scores = vader.polarity_scores(text)
label = "POSITIVE" if scores['compound'] > 0.05 else "NEGATIVE" if scores['compound'] < -0.05 else "NEUTRAL"
normalized_score = normalize_score(scores['compound'], -1, 1)
return label, normalized_score
def analyze_with_afinn(text):
score = afinn.score(text)
label = "POSITIVE" if score > 0 else "NEGATIVE" if score < 0 else "NEUTRAL"
normalized_score = normalize_score(score, -5, 5)
return label, normalized_score
#mapeio BERT e DistilBERT
def map_label(label):
if label == "LABEL_0":
return "NEGATIVE"
elif label == "LABEL_1":
return "POSITIVE"
else:
return "NEUTRAL"
#Comite
def calculate_committee_decision(results):
#coto voto
vote_count = {"POSITIVE": 0, "NEGATIVE": 0, "NEUTRAL": 0}
for label, score in results.values():
vote_count[label] += 1
#maioria dos votos
final_label = max(vote_count, key=vote_count.get)
return final_label, vote_count[final_label] / len(results)
def analyze_text(text):
results = {
"BERT Base": analyze_with_bert(text),
"BERT Large": analyze_with_bert_large(text),
"DistilBERT": analyze_with_distilbert(text),
"SiEBERT": analyze_with_siebert(text),
"TextBlob": analyze_with_textblob(text),
"VADER": analyze_with_vader(text),
"AFINN": analyze_with_afinn(text)
}
final_label, vote_ratio = calculate_committee_decision(results)
results["Committee Decision"] = {"label": final_label, "vote_ratio": vote_ratio}
return results
# Gradio Interface
iface = gr.Interface(
fn=analyze_text,
inputs="text",
outputs="json",
title="Sentiment-Analysis-Committee",
description="Enter a text. And the Democratic committee among Sentiment Analysis methods will conduct the vote."
)
iface.launch(debug=True)
|