File size: 3,556 Bytes
aa5f929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9558232
 
 
 
 
 
 
 
aa5f929
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from transformers import pipeline
import gradio as gr
from textblob import TextBlob
import numpy as np
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
from afinn import Afinn

#VADER e AFINN
nltk.download('vader_lexicon')
vader = SentimentIntensityAnalyzer()
afinn = Afinn()

#Hugging Face
bert_model = pipeline("sentiment-analysis", model="bert-base-uncased")
#BERT Large
bert_large_model = pipeline("sentiment-analysis", model="bert-large-uncased")
distilbert_model = pipeline("sentiment-analysis", model="distilbert-base-uncased")
siebert_model = pipeline("sentiment-analysis", model="siebert/sentiment-roberta-large-english")


def normalize_score(score, range_min, range_max):
    return (score - range_min) / (range_max - range_min)


def analyze_with_bert(text):
    analysis = bert_model(text)
    label, score = map_label(analysis[0]['label']), analysis[0]['score']
    return label, score


def analyze_with_bert_large(text):
    analysis = bert_large_model(text)
    label, score = map_label(analysis[0]['label']), analysis[0]['score']
    return label, score

def analyze_with_distilbert(text):
    analysis = distilbert_model(text)
    label, score = map_label(analysis[0]['label']), analysis[0]['score']
    return label, score

def analyze_with_siebert(text):
    analysis = siebert_model(text)
    return analysis[0]['label'], analysis[0]['score']

def analyze_with_textblob(text):
    analysis = TextBlob(text).sentiment
    label = "POSITIVE" if analysis.polarity > 0 else "NEGATIVE" if analysis.polarity < 0 else "NEUTRAL"
    normalized_score = normalize_score(analysis.polarity, -1, 1)
    return label, normalized_score

def analyze_with_vader(text):
    scores = vader.polarity_scores(text)
    label = "POSITIVE" if scores['compound'] > 0.05 else "NEGATIVE" if scores['compound'] < -0.05 else "NEUTRAL"
    normalized_score = normalize_score(scores['compound'], -1, 1)
    return label, normalized_score

def analyze_with_afinn(text):
    score = afinn.score(text)
    label = "POSITIVE" if score > 0 else "NEGATIVE" if score < 0 else "NEUTRAL"
    normalized_score = normalize_score(score, -5, 5)
    return label, normalized_score

#mapeio BERT e DistilBERT
def map_label(label):
    if label == "LABEL_0":
        return "NEGATIVE"
    elif label == "LABEL_1":
        return "POSITIVE"
    else:
        return "NEUTRAL"


#Comite
def calculate_committee_decision(results):
    #coto voto
    vote_count = {"POSITIVE": 0, "NEGATIVE": 0, "NEUTRAL": 0}
    for label, score in results.values():
        vote_count[label] += 1

    #maioria dos votos
    final_label = max(vote_count, key=vote_count.get)
    return final_label, vote_count[final_label] / len(results)




def analyze_text(text):
    results = {
        "BERT Base": analyze_with_bert(text),
        "BERT Large": analyze_with_bert_large(text),
        "DistilBERT": analyze_with_distilbert(text),
        "SiEBERT": analyze_with_siebert(text),
        "TextBlob": analyze_with_textblob(text),
        "VADER": analyze_with_vader(text),
        "AFINN": analyze_with_afinn(text)
    }

    final_label, vote_ratio = calculate_committee_decision(results)
    results["Committee Decision"] = {"label": final_label, "vote_ratio": vote_ratio}
    return results


# Gradio Interface
iface = gr.Interface(
    fn=analyze_text,
    inputs="text",
    outputs="json",
    title="Sentiment-Analysis-Committee",
    description="Enter a text. And the Democratic committee among Sentiment Analysis methods will conduct the vote."
)
iface.launch(debug=True)