File size: 3,412 Bytes
e48b085
d209a4c
03a7dca
 
 
 
 
 
89073fe
e48b085
 
 
 
 
 
 
03a7dca
2a13288
03a7dca
 
9b44783
 
03a7dca
9b44783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03a7dca
 
2a13288
03a7dca
 
 
 
 
 
 
 
2a13288
03a7dca
89073fe
 
 
03a7dca
 
 
 
2a13288
03a7dca
2a13288
03a7dca
 
 
 
 
 
 
9b44783
03a7dca
 
 
 
 
 
 
d209a4c
 
 
 
 
 
 
 
 
 
 
 
03a7dca
2a13288
03a7dca
 
2e5bff4
 
03a7dca
e48b085
03a7dca
 
6db1028
5669498
2e5bff4
03a7dca
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import time
import gradio as gr
import torch
from PIL import Image
from gtts import gTTS
import numpy as np
import cv2
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
from huggingface_hub import login

# Ler o token da variável de ambiente
hf_token = os.getenv("HUGGINGFACE_TOKEN")

if hf_token:
    login(token=hf_token)

# Carregar o modelo YOLOv5
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')

# Função para calcular a GLCM e o contraste manualmente
def calculate_glcm_contrast(image):
    gray_image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
    max_value = gray_image.max() + 1
    glcm = np.zeros((max_value, max_value), dtype=np.float64)

    for i in range(gray_image.shape[0] - 1):
        for j in range(gray_image.shape[1] - 1):
            x = gray_image[i, j]
            y = gray_image[i + 1, j + 1]
            glcm[x, y] += 1

    glcm = glcm / glcm.sum()

    contrast = 0.0
    for i in range(max_value):
        for j in range(max_value):
            contrast += (i - j) ** 2 * glcm[i, j]
    
    return contrast

# Função para descrever imagem usando BLIP
def describe_image(image):
    processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
    model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
    inputs = processor(image, return_tensors="pt")
    out = model.generate(**inputs)
    description = processor.decode(out[0], skip_special_tokens=True)
    return description

# Função para traduzir descrição para português
def translate_description(description):
    model_name = 'Helsinki-NLP/opus-mt-tc-big-en-pt'
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
    translated = model.generate(**tokenizer(description, return_tensors="pt", padding=True))
    translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
    return translated_text

# Função principal para processar imagem e gerar saída de voz
def process_image(image):
    # Detecção de objetos
    results = model(image)
    detected_image = results.render()[0]

    # Análise de cor (média RGB)
    mean_rgb = np.mean(np.array(image), axis=(0, 1))

    # Análise de textura
    texture_contrast = calculate_glcm_contrast(image)

    # Descrição da imagem
    description = describe_image(image)
    translated_description = translate_description(description)

    # Texto para voz
    tts = gTTS(text=translated_description, lang='pt')
    attempts = 0
    while attempts < 5:
        try:
            tts.save("output.mp3")
            break
        except gTTS.tts.gTTSError as e:
            if e.r.status_code == 429:
                print("Too many requests. Waiting before retrying...")
                time.sleep(5)
                attempts += 1
            else:
                raise e

    # Retornar imagem com detecções, descrição e áudio
    return Image.fromarray(detected_image), translated_description, "output.mp3"

# Carregar imagem de exemplo diretamente do código
example_image_path = "example1.JPG"

# Interface Gradio
iface = gr.Interface(
    fn=process_image,
    inputs=gr.Image(type="pil"),
    outputs=[gr.Image(type="pil"), gr.Textbox(), gr.Audio(type="filepath")],
    examples=[example_image_path]
)

iface.launch()