File size: 3,737 Bytes
e48b085 d209a4c 03a7dca 89073fe e48b085 8dbeec6 e48b085 03a7dca 8dbeec6 03a7dca 8dbeec6 9b44783 03a7dca 9b44783 03a7dca 8dbeec6 228a66b 8dbeec6 228a66b 8dbeec6 228a66b 2f3c50a 228a66b 8dbeec6 03a7dca 8dbeec6 03a7dca 89073fe 03a7dca 8dbeec6 03a7dca 8dbeec6 03a7dca 228a66b 03a7dca 8dbeec6 228a66b 8dbeec6 228a66b d209a4c 8dbeec6 d209a4c 03a7dca 8dbeec6 228a66b 03a7dca 8dbeec6 2e5bff4 03a7dca 8dbeec6 03a7dca 6db1028 5669498 2e5bff4 03a7dca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import os
import time
import gradio as gr
import torch
from PIL import Image
from gtts import gTTS
import numpy as np
import cv2
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
from huggingface_hub import login
#token
hf_token = os.getenv("HUGGINGFACE_TOKEN")
if hf_token:
login(token=hf_token)
#modelo YOLOv5
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
#Calcular a GLCM e o contraste
def calculate_glcm_contrast(image):
gray_image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
max_value = gray_image.max() + 1
glcm = np.zeros((max_value, max_value), dtype=np.float64)
for i in range(gray_image.shape[0] - 1):
for j in range(gray_image.shape[1] - 1):
x = gray_image[i, j]
y = gray_image[i + 1, j + 1]
glcm[x, y] += 1
glcm = glcm / glcm.sum()
contrast = 0.0
for i in range(max_value):
for j in range(max_value):
contrast += (i - j) ** 2 * glcm[i, j]
return contrast
#Analisar a textura e a temperatura de cor
def analyze_image_properties(image):
#cor (média RGB)
image_rgb = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
avg_color_per_row = np.average(image_rgb, axis=0)
avg_color = np.average(avg_color_per_row, axis=0)
temperature = 'fria' if np.mean(avg_color) < 128 else 'quente'
#textura
texture_contrast = calculate_glcm_contrast(image)
texture = 'lisa' if texture_contrast < 100 else 'texturizada'
return temperature, texture
#Descrever imagem com BLIP
def describe_image(image):
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
inputs = processor(image, return_tensors="pt")
out = model.generate(**inputs)
description = processor.decode(out[0], skip_special_tokens=True)
return description
#Traduz para .pt
def translate_description(description):
model_name = 'Helsinki-NLP/opus-mt-tc-big-en-pt'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
translated = model.generate(**tokenizer(description, return_tensors="pt", padding=True))
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
return translated_text
#Processo
def process_image(image):
# Detecta
results = model(image)
detected_image = results.render()[0]
# Análise de cor (média RGB)
mean_rgb = np.mean(np.array(image), axis=(0, 1))
# Análise de textura e temperatura de cor
temperature, texture = analyze_image_properties(image)
# Descrição da imagem
description = describe_image(image)
translated_description = translate_description(description)
# Construção
final_description = f"{translated_description}. A textura é {texture} e a temperatura de cor é {temperature}."
# Texto2voz
tts = gTTS(text=final_description, lang='pt')
attempts = 0
while attempts < 5:
try:
tts.save("output.mp3")
break
except gTTS.tts.gTTSError as e:
if e.r.status_code == 429:
print("Muitas requisicoes...")
time.sleep(5)
attempts += 1
else:
raise e
#Saída
return Image.fromarray(detected_image), final_description, "output.mp3"
#
example_image_path = "example1.JPG"
#
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"),
outputs=[gr.Image(type="pil"), gr.Textbox(), gr.Audio(type="filepath")],
examples=[example_image_path]
)
iface.launch()
|