File size: 3,737 Bytes
e48b085
d209a4c
03a7dca
 
 
 
 
 
89073fe
e48b085
 
8dbeec6
e48b085
 
 
 
03a7dca
8dbeec6
03a7dca
 
8dbeec6
9b44783
03a7dca
9b44783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03a7dca
 
8dbeec6
228a66b
8dbeec6
228a66b
 
 
 
 
8dbeec6
228a66b
2f3c50a
228a66b
 
 
8dbeec6
03a7dca
 
 
 
 
 
 
 
8dbeec6
03a7dca
89073fe
 
 
03a7dca
 
 
 
8dbeec6
03a7dca
8dbeec6
03a7dca
 
 
 
 
 
228a66b
 
03a7dca
 
 
 
 
8dbeec6
228a66b
 
8dbeec6
228a66b
d209a4c
 
 
 
 
 
 
8dbeec6
d209a4c
 
 
 
03a7dca
8dbeec6
228a66b
03a7dca
8dbeec6
2e5bff4
03a7dca
8dbeec6
03a7dca
 
6db1028
5669498
2e5bff4
03a7dca
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import time
import gradio as gr
import torch
from PIL import Image
from gtts import gTTS
import numpy as np
import cv2
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
from huggingface_hub import login

#token
hf_token = os.getenv("HUGGINGFACE_TOKEN")

if hf_token:
    login(token=hf_token)

#modelo YOLOv5
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')

#Calcular a GLCM e o contraste
def calculate_glcm_contrast(image):
    gray_image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
    max_value = gray_image.max() + 1
    glcm = np.zeros((max_value, max_value), dtype=np.float64)

    for i in range(gray_image.shape[0] - 1):
        for j in range(gray_image.shape[1] - 1):
            x = gray_image[i, j]
            y = gray_image[i + 1, j + 1]
            glcm[x, y] += 1

    glcm = glcm / glcm.sum()

    contrast = 0.0
    for i in range(max_value):
        for j in range(max_value):
            contrast += (i - j) ** 2 * glcm[i, j]
    
    return contrast

#Analisar a textura e a temperatura de cor
def analyze_image_properties(image):
    #cor (média RGB)
    image_rgb = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
    avg_color_per_row = np.average(image_rgb, axis=0)
    avg_color = np.average(avg_color_per_row, axis=0)
    temperature = 'fria' if np.mean(avg_color) < 128 else 'quente'

    #textura
    texture_contrast = calculate_glcm_contrast(image)
    texture = 'lisa' if texture_contrast < 100 else 'texturizada'

    return temperature, texture

#Descrever imagem com BLIP
def describe_image(image):
    processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
    model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
    inputs = processor(image, return_tensors="pt")
    out = model.generate(**inputs)
    description = processor.decode(out[0], skip_special_tokens=True)
    return description

#Traduz para .pt
def translate_description(description):
    model_name = 'Helsinki-NLP/opus-mt-tc-big-en-pt'
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
    translated = model.generate(**tokenizer(description, return_tensors="pt", padding=True))
    translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
    return translated_text

#Processo
def process_image(image):
    # Detecta
    results = model(image)
    detected_image = results.render()[0]

    # Análise de cor (média RGB)
    mean_rgb = np.mean(np.array(image), axis=(0, 1))

    # Análise de textura e temperatura de cor
    temperature, texture = analyze_image_properties(image)

    # Descrição da imagem
    description = describe_image(image)
    translated_description = translate_description(description)

    # Construção
    final_description = f"{translated_description}. A textura é {texture} e a temperatura de cor é {temperature}."

    # Texto2voz
    tts = gTTS(text=final_description, lang='pt')
    attempts = 0
    while attempts < 5:
        try:
            tts.save("output.mp3")
            break
        except gTTS.tts.gTTSError as e:
            if e.r.status_code == 429:
                print("Muitas requisicoes...")
                time.sleep(5)
                attempts += 1
            else:
                raise e

    #Saída
    return Image.fromarray(detected_image), final_description, "output.mp3"

#
example_image_path = "example1.JPG"

#
iface = gr.Interface(
    fn=process_image,
    inputs=gr.Image(type="pil"),
    outputs=[gr.Image(type="pil"), gr.Textbox(), gr.Audio(type="filepath")],
    examples=[example_image_path]
)

iface.launch()