rmaitest commited on
Commit
8a57db9
·
verified ·
1 Parent(s): 722ddd6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -3
app.py CHANGED
@@ -2,6 +2,8 @@ import gradio as gr
2
  import pandas as pd
3
  from huggingface_hub import hf_hub_download
4
  import joblib
 
 
5
 
6
  # Load the model
7
  repo_id = "rmaitest/mlmodel2"
@@ -11,6 +13,7 @@ model_file = "house_price_model.pkl" # Adjust as necessary
11
  model_path = hf_hub_download(repo_id, model_file)
12
  model = joblib.load(model_path)
13
 
 
14
  def predict_price(size, bedrooms, age):
15
  # Create a DataFrame from the input
16
  input_data = pd.DataFrame({
@@ -23,7 +26,7 @@ def predict_price(size, bedrooms, age):
23
  prediction = model.predict(input_data)
24
  return prediction[0]
25
 
26
- # Define the Gradio interface (remove api_open parameter)
27
  iface = gr.Interface(
28
  fn=predict_price,
29
  inputs=[
@@ -36,8 +39,14 @@ iface = gr.Interface(
36
  description="Enter the size, number of bedrooms, and age of the house to get the predicted price."
37
  )
38
 
39
- # Launch the interface
 
 
 
 
 
 
40
  if __name__ == "__main__":
41
- iface.launch()
42
 
43
 
 
2
  import pandas as pd
3
  from huggingface_hub import hf_hub_download
4
  import joblib
5
+ from fastapi import FastAPI
6
+ from gradio import fastapi as gr_fastapi
7
 
8
  # Load the model
9
  repo_id = "rmaitest/mlmodel2"
 
13
  model_path = hf_hub_download(repo_id, model_file)
14
  model = joblib.load(model_path)
15
 
16
+ # Define the prediction function
17
  def predict_price(size, bedrooms, age):
18
  # Create a DataFrame from the input
19
  input_data = pd.DataFrame({
 
26
  prediction = model.predict(input_data)
27
  return prediction[0]
28
 
29
+ # Define the Gradio interface
30
  iface = gr.Interface(
31
  fn=predict_price,
32
  inputs=[
 
39
  description="Enter the size, number of bedrooms, and age of the house to get the predicted price."
40
  )
41
 
42
+ # Create FastAPI app
43
+ app = FastAPI()
44
+
45
+ # Mount Gradio as an API on the /predict endpoint
46
+ app = gr_fastapi.mount_gradio_app(app, iface, path="/predict")
47
+
48
+ # Launch Gradio app (optionally with API)
49
  if __name__ == "__main__":
50
+ iface.launch(share=True)
51
 
52