Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,766 Bytes
61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
import unittest
from copy import copy
import cv2
import torch
from fvcore.common.benchmark import benchmark
from torch.nn import functional as F
from detectron2.layers.roi_align import ROIAlign, roi_align
class ROIAlignTest(unittest.TestCase):
def test_forward_output(self):
input = np.arange(25).reshape(5, 5).astype("float32")
"""
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24
"""
output = self._simple_roialign(input, [1, 1, 3, 3], (4, 4), aligned=False)
output_correct = self._simple_roialign(input, [1, 1, 3, 3], (4, 4), aligned=True)
# without correction:
old_results = [
[7.5, 8, 8.5, 9],
[10, 10.5, 11, 11.5],
[12.5, 13, 13.5, 14],
[15, 15.5, 16, 16.5],
]
# with 0.5 correction:
correct_results = [
[4.5, 5.0, 5.5, 6.0],
[7.0, 7.5, 8.0, 8.5],
[9.5, 10.0, 10.5, 11.0],
[12.0, 12.5, 13.0, 13.5],
]
# This is an upsampled version of [[6, 7], [11, 12]]
self.assertTrue(np.allclose(output.flatten(), np.asarray(old_results).flatten()))
self.assertTrue(
np.allclose(output_correct.flatten(), np.asarray(correct_results).flatten())
)
# Also see similar issues in tensorflow at
# https://github.com/tensorflow/tensorflow/issues/26278
def test_resize(self):
H, W = 30, 30
input = np.random.rand(H, W).astype("float32") * 100
box = [10, 10, 20, 20]
output = self._simple_roialign(input, box, (5, 5), aligned=True)
input2x = cv2.resize(input, (W // 2, H // 2), interpolation=cv2.INTER_LINEAR)
box2x = [x / 2 for x in box]
output2x = self._simple_roialign(input2x, box2x, (5, 5), aligned=True)
diff = np.abs(output2x - output)
self.assertTrue(diff.max() < 1e-4)
def test_grid_sample_equivalence(self):
H, W = 30, 30
input = np.random.rand(H, W).astype("float32") * 100
box = [10, 10, 20, 20]
for ratio in [1, 2, 3]:
output = self._simple_roialign(input, box, (5, 5), sampling_ratio=ratio)
output_grid_sample = grid_sample_roi_align(
torch.from_numpy(input[None, None, :, :]).float(),
torch.as_tensor(box).float()[None, :],
5,
1.0,
ratio,
)
self.assertTrue(torch.allclose(output, output_grid_sample))
def _simple_roialign(self, img, box, resolution, sampling_ratio=0, aligned=True):
"""
RoiAlign with scale 1.0.
"""
if isinstance(resolution, int):
resolution = (resolution, resolution)
op = ROIAlign(resolution, 1.0, sampling_ratio, aligned=aligned)
input = torch.from_numpy(img[None, None, :, :].astype("float32"))
rois = [0] + list(box)
rois = torch.from_numpy(np.asarray(rois)[None, :].astype("float32"))
output = op.forward(input, rois)
if torch.cuda.is_available():
output_cuda = op.forward(input.cuda(), rois.cuda()).cpu()
self.assertTrue(torch.allclose(output, output_cuda))
return output[0, 0]
def _simple_roialign_with_grad(self, img, box, resolution, device):
if isinstance(resolution, int):
resolution = (resolution, resolution)
op = ROIAlign(resolution, 1.0, 0, aligned=True)
input = torch.from_numpy(img[None, None, :, :].astype("float32"))
rois = [0] + list(box)
rois = torch.from_numpy(np.asarray(rois)[None, :].astype("float32"))
input = input.to(device=device)
rois = rois.to(device=device)
input.requires_grad = True
output = op.forward(input, rois)
return input, output
def test_empty_box(self):
img = np.random.rand(5, 5)
box = [3, 4, 5, 4]
o = self._simple_roialign(img, box, 7)
self.assertTrue(o.shape == (7, 7))
self.assertTrue((o == 0).all())
for dev in ["cpu"] + ["cuda"] if torch.cuda.is_available() else []:
input, output = self._simple_roialign_with_grad(img, box, 7, torch.device(dev))
output.sum().backward()
self.assertTrue(torch.allclose(input.grad, torch.zeros_like(input)))
def test_empty_batch(self):
input = torch.zeros(0, 3, 10, 10, dtype=torch.float32)
rois = torch.zeros(0, 5, dtype=torch.float32)
op = ROIAlign((7, 7), 1.0, 0, aligned=True)
output = op.forward(input, rois)
self.assertTrue(output.shape == (0, 3, 7, 7))
def grid_sample_roi_align(input, boxes, output_size, scale, sampling_ratio):
# unlike true roi_align, this does not support different batch_idx
from detectron2.projects.point_rend.point_features import (
generate_regular_grid_point_coords,
get_point_coords_wrt_image,
point_sample,
)
N, _, H, W = input.shape
R = len(boxes)
assert N == 1
boxes = boxes * scale
grid = generate_regular_grid_point_coords(R, output_size * sampling_ratio, device=boxes.device)
coords = get_point_coords_wrt_image(boxes, grid)
coords = coords / torch.as_tensor([W, H], device=coords.device) # R, s^2, 2
res = point_sample(input, coords.unsqueeze(0), align_corners=False) # 1,C, R,s^2
res = (
res.squeeze(0)
.permute(1, 0, 2)
.reshape(R, -1, output_size * sampling_ratio, output_size * sampling_ratio)
)
res = F.avg_pool2d(res, sampling_ratio)
return res
def benchmark_roi_align():
def random_boxes(mean_box, stdev, N, maxsize):
ret = torch.rand(N, 4) * stdev + torch.tensor(mean_box, dtype=torch.float)
ret.clamp_(min=0, max=maxsize)
return ret
def func(shape, nboxes_per_img, sampling_ratio, device, box_size="large"):
N, _, H, _ = shape
input = torch.rand(*shape)
boxes = []
batch_idx = []
for k in range(N):
if box_size == "large":
b = random_boxes([80, 80, 130, 130], 24, nboxes_per_img, H)
else:
b = random_boxes([100, 100, 110, 110], 4, nboxes_per_img, H)
boxes.append(b)
batch_idx.append(torch.zeros(nboxes_per_img, 1, dtype=torch.float32) + k)
boxes = torch.cat(boxes, axis=0)
batch_idx = torch.cat(batch_idx, axis=0)
boxes = torch.cat([batch_idx, boxes], axis=1)
input = input.to(device=device)
boxes = boxes.to(device=device)
def bench():
if False and sampling_ratio > 0 and N == 1:
# enable to benchmark grid_sample (slower)
grid_sample_roi_align(input, boxes[:, 1:], 7, 1.0, sampling_ratio)
else:
roi_align(input, boxes, 7, 1.0, sampling_ratio, True)
if device == "cuda":
torch.cuda.synchronize()
return bench
def gen_args(arg):
args = []
for size in ["small", "large"]:
for ratio in [0, 2]:
args.append(copy(arg))
args[-1]["sampling_ratio"] = ratio
args[-1]["box_size"] = size
return args
arg = dict(shape=(1, 512, 256, 256), nboxes_per_img=512, device="cuda")
benchmark(func, "cuda_roialign", gen_args(arg), num_iters=20, warmup_iters=1)
arg.update({"device": "cpu", "shape": (1, 256, 128, 128)})
benchmark(func, "cpu_roialign", gen_args(arg), num_iters=5, warmup_iters=1)
if __name__ == "__main__":
if torch.cuda.is_available():
benchmark_roi_align()
unittest.main()
|