File size: 5,713 Bytes
61c2d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
from typing import Dict
import torch
from torch import nn
from torch.nn import functional as F

from detectron2.layers import ShapeSpec, cat
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY

from .point_features import (
    get_uncertain_point_coords_on_grid,
    get_uncertain_point_coords_with_randomness,
    point_sample,
)
from .point_head import build_point_head


def calculate_uncertainty(sem_seg_logits):
    """
    For each location of the prediction `sem_seg_logits` we estimate uncerainty as the
        difference between top first and top second predicted logits.

    Args:
        mask_logits (Tensor): A tensor of shape (N, C, ...), where N is the minibatch size and
            C is the number of foreground classes. The values are logits.

    Returns:
        scores (Tensor): A tensor of shape (N, 1, ...) that contains uncertainty scores with
            the most uncertain locations having the highest uncertainty score.
    """
    top2_scores = torch.topk(sem_seg_logits, k=2, dim=1)[0]
    return (top2_scores[:, 1] - top2_scores[:, 0]).unsqueeze(1)


@SEM_SEG_HEADS_REGISTRY.register()
class PointRendSemSegHead(nn.Module):
    """
    A semantic segmentation head that combines a head set in `POINT_HEAD.COARSE_SEM_SEG_HEAD_NAME`
    and a point head set in `MODEL.POINT_HEAD.NAME`.
    """

    def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]):
        super().__init__()

        self.ignore_value = cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE

        self.coarse_sem_seg_head = SEM_SEG_HEADS_REGISTRY.get(
            cfg.MODEL.POINT_HEAD.COARSE_SEM_SEG_HEAD_NAME
        )(cfg, input_shape)
        self._init_point_head(cfg, input_shape)

    def _init_point_head(self, cfg, input_shape: Dict[str, ShapeSpec]):
        # fmt: off
        assert cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES == cfg.MODEL.POINT_HEAD.NUM_CLASSES
        feature_channels             = {k: v.channels for k, v in input_shape.items()}
        self.in_features             = cfg.MODEL.POINT_HEAD.IN_FEATURES
        self.train_num_points        = cfg.MODEL.POINT_HEAD.TRAIN_NUM_POINTS
        self.oversample_ratio        = cfg.MODEL.POINT_HEAD.OVERSAMPLE_RATIO
        self.importance_sample_ratio = cfg.MODEL.POINT_HEAD.IMPORTANCE_SAMPLE_RATIO
        self.subdivision_steps       = cfg.MODEL.POINT_HEAD.SUBDIVISION_STEPS
        self.subdivision_num_points  = cfg.MODEL.POINT_HEAD.SUBDIVISION_NUM_POINTS
        # fmt: on

        in_channels = int(np.sum([feature_channels[f] for f in self.in_features]))
        self.point_head = build_point_head(cfg, ShapeSpec(channels=in_channels, width=1, height=1))

    def forward(self, features, targets=None):
        coarse_sem_seg_logits = self.coarse_sem_seg_head.layers(features)

        if self.training:
            losses = self.coarse_sem_seg_head.losses(coarse_sem_seg_logits, targets)

            with torch.no_grad():
                point_coords = get_uncertain_point_coords_with_randomness(
                    coarse_sem_seg_logits,
                    calculate_uncertainty,
                    self.train_num_points,
                    self.oversample_ratio,
                    self.importance_sample_ratio,
                )
            coarse_features = point_sample(coarse_sem_seg_logits, point_coords, align_corners=False)

            fine_grained_features = cat(
                [
                    point_sample(features[in_feature], point_coords, align_corners=False)
                    for in_feature in self.in_features
                ],
                dim=1,
            )
            point_logits = self.point_head(fine_grained_features, coarse_features)
            point_targets = (
                point_sample(
                    targets.unsqueeze(1).to(torch.float),
                    point_coords,
                    mode="nearest",
                    align_corners=False,
                )
                .squeeze(1)
                .to(torch.long)
            )
            losses["loss_sem_seg_point"] = F.cross_entropy(
                point_logits, point_targets, reduction="mean", ignore_index=self.ignore_value
            )
            return None, losses
        else:
            sem_seg_logits = coarse_sem_seg_logits.clone()
            for _ in range(self.subdivision_steps):
                sem_seg_logits = F.interpolate(
                    sem_seg_logits, scale_factor=2, mode="bilinear", align_corners=False
                )
                uncertainty_map = calculate_uncertainty(sem_seg_logits)
                point_indices, point_coords = get_uncertain_point_coords_on_grid(
                    uncertainty_map, self.subdivision_num_points
                )
                fine_grained_features = cat(
                    [
                        point_sample(features[in_feature], point_coords, align_corners=False)
                        for in_feature in self.in_features
                    ]
                )
                coarse_features = point_sample(
                    coarse_sem_seg_logits, point_coords, align_corners=False
                )
                point_logits = self.point_head(fine_grained_features, coarse_features)

                # put sem seg point predictions to the right places on the upsampled grid.
                N, C, H, W = sem_seg_logits.shape
                point_indices = point_indices.unsqueeze(1).expand(-1, C, -1)
                sem_seg_logits = (
                    sem_seg_logits.reshape(N, C, H * W)
                    .scatter_(2, point_indices, point_logits)
                    .view(N, C, H, W)
                )
            return sem_seg_logits, {}