Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,600 Bytes
61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# Copyright (c) Facebook, Inc. and its affiliates.
# Reference: https://github.com/bowenc0221/panoptic-deeplab/blob/master/segmentation/model/post_processing/instance_post_processing.py # noqa
from collections import Counter
import torch
import torch.nn.functional as F
def find_instance_center(center_heatmap, threshold=0.1, nms_kernel=3, top_k=None):
"""
Find the center points from the center heatmap.
Args:
center_heatmap: A Tensor of shape [1, H, W] of raw center heatmap output.
threshold: A float, threshold applied to center heatmap score.
nms_kernel: An integer, NMS max pooling kernel size.
top_k: An integer, top k centers to keep.
Returns:
A Tensor of shape [K, 2] where K is the number of center points. The
order of second dim is (y, x).
"""
# Thresholding, setting values below threshold to -1.
center_heatmap = F.threshold(center_heatmap, threshold, -1)
# NMS
nms_padding = (nms_kernel - 1) // 2
center_heatmap_max_pooled = F.max_pool2d(
center_heatmap, kernel_size=nms_kernel, stride=1, padding=nms_padding
)
center_heatmap[center_heatmap != center_heatmap_max_pooled] = -1
# Squeeze first two dimensions.
center_heatmap = center_heatmap.squeeze()
assert len(center_heatmap.size()) == 2, "Something is wrong with center heatmap dimension."
# Find non-zero elements.
if top_k is None:
return torch.nonzero(center_heatmap > 0)
else:
# find top k centers.
top_k_scores, _ = torch.topk(torch.flatten(center_heatmap), top_k)
return torch.nonzero(center_heatmap > top_k_scores[-1].clamp_(min=0))
def group_pixels(center_points, offsets):
"""
Gives each pixel in the image an instance id.
Args:
center_points: A Tensor of shape [K, 2] where K is the number of center points.
The order of second dim is (y, x).
offsets: A Tensor of shape [2, H, W] of raw offset output. The order of
second dim is (offset_y, offset_x).
Returns:
A Tensor of shape [1, H, W] with values in range [1, K], which represents
the center this pixel belongs to.
"""
height, width = offsets.size()[1:]
# Generates a coordinate map, where each location is the coordinate of
# that location.
y_coord, x_coord = torch.meshgrid(
torch.arange(height, dtype=offsets.dtype, device=offsets.device),
torch.arange(width, dtype=offsets.dtype, device=offsets.device),
)
coord = torch.cat((y_coord.unsqueeze(0), x_coord.unsqueeze(0)), dim=0)
center_loc = coord + offsets
center_loc = center_loc.flatten(1).T.unsqueeze_(0) # [1, H*W, 2]
center_points = center_points.unsqueeze(1) # [K, 1, 2]
# Distance: [K, H*W].
distance = torch.norm(center_points - center_loc, dim=-1)
# Finds center with minimum distance at each location, offset by 1, to
# reserve id=0 for stuff.
instance_id = torch.argmin(distance, dim=0).reshape((1, height, width)) + 1
return instance_id
def get_instance_segmentation(
sem_seg, center_heatmap, offsets, thing_seg, thing_ids, threshold=0.1, nms_kernel=3, top_k=None
):
"""
Post-processing for instance segmentation, gets class agnostic instance id.
Args:
sem_seg: A Tensor of shape [1, H, W], predicted semantic label.
center_heatmap: A Tensor of shape [1, H, W] of raw center heatmap output.
offsets: A Tensor of shape [2, H, W] of raw offset output. The order of
second dim is (offset_y, offset_x).
thing_seg: A Tensor of shape [1, H, W], predicted foreground mask,
if not provided, inference from semantic prediction.
thing_ids: A set of ids from contiguous category ids belonging
to thing categories.
threshold: A float, threshold applied to center heatmap score.
nms_kernel: An integer, NMS max pooling kernel size.
top_k: An integer, top k centers to keep.
Returns:
A Tensor of shape [1, H, W] with value 0 represent stuff (not instance)
and other positive values represent different instances.
A Tensor of shape [1, K, 2] where K is the number of center points.
The order of second dim is (y, x).
"""
center_points = find_instance_center(
center_heatmap, threshold=threshold, nms_kernel=nms_kernel, top_k=top_k
)
if center_points.size(0) == 0:
return torch.zeros_like(sem_seg), center_points.unsqueeze(0)
ins_seg = group_pixels(center_points, offsets)
return thing_seg * ins_seg, center_points.unsqueeze(0)
def merge_semantic_and_instance(
sem_seg, ins_seg, semantic_thing_seg, label_divisor, thing_ids, stuff_area, void_label
):
"""
Post-processing for panoptic segmentation, by merging semantic segmentation
label and class agnostic instance segmentation label.
Args:
sem_seg: A Tensor of shape [1, H, W], predicted category id for each pixel.
ins_seg: A Tensor of shape [1, H, W], predicted instance id for each pixel.
semantic_thing_seg: A Tensor of shape [1, H, W], predicted foreground mask.
label_divisor: An integer, used to convert panoptic id =
semantic id * label_divisor + instance_id.
thing_ids: Set, a set of ids from contiguous category ids belonging
to thing categories.
stuff_area: An integer, remove stuff whose area is less tan stuff_area.
void_label: An integer, indicates the region has no confident prediction.
Returns:
A Tensor of shape [1, H, W].
"""
# In case thing mask does not align with semantic prediction.
pan_seg = torch.zeros_like(sem_seg) + void_label
is_thing = (ins_seg > 0) & (semantic_thing_seg > 0)
# Keep track of instance id for each class.
class_id_tracker = Counter()
# Paste thing by majority voting.
instance_ids = torch.unique(ins_seg)
for ins_id in instance_ids:
if ins_id == 0:
continue
# Make sure only do majority voting within `semantic_thing_seg`.
thing_mask = (ins_seg == ins_id) & is_thing
if torch.nonzero(thing_mask).size(0) == 0:
continue
class_id, _ = torch.mode(sem_seg[thing_mask].view(-1))
class_id_tracker[class_id.item()] += 1
new_ins_id = class_id_tracker[class_id.item()]
pan_seg[thing_mask] = class_id * label_divisor + new_ins_id
# Paste stuff to unoccupied area.
class_ids = torch.unique(sem_seg)
for class_id in class_ids:
if class_id.item() in thing_ids:
# thing class
continue
# Calculate stuff area.
stuff_mask = (sem_seg == class_id) & (ins_seg == 0)
if stuff_mask.sum().item() >= stuff_area:
pan_seg[stuff_mask] = class_id * label_divisor
return pan_seg
def get_panoptic_segmentation(
sem_seg,
center_heatmap,
offsets,
thing_ids,
label_divisor,
stuff_area,
void_label,
threshold=0.1,
nms_kernel=7,
top_k=200,
foreground_mask=None,
):
"""
Post-processing for panoptic segmentation.
Args:
sem_seg: A Tensor of shape [1, H, W] of predicted semantic label.
center_heatmap: A Tensor of shape [1, H, W] of raw center heatmap output.
offsets: A Tensor of shape [2, H, W] of raw offset output. The order of
second dim is (offset_y, offset_x).
thing_ids: A set of ids from contiguous category ids belonging
to thing categories.
label_divisor: An integer, used to convert panoptic id =
semantic id * label_divisor + instance_id.
stuff_area: An integer, remove stuff whose area is less tan stuff_area.
void_label: An integer, indicates the region has no confident prediction.
threshold: A float, threshold applied to center heatmap score.
nms_kernel: An integer, NMS max pooling kernel size.
top_k: An integer, top k centers to keep.
foreground_mask: Optional, A Tensor of shape [1, H, W] of predicted
binary foreground mask. If not provided, it will be generated from
sem_seg.
Returns:
A Tensor of shape [1, H, W], int64.
"""
if sem_seg.dim() != 3 and sem_seg.size(0) != 1:
raise ValueError("Semantic prediction with un-supported shape: {}.".format(sem_seg.size()))
if center_heatmap.dim() != 3:
raise ValueError(
"Center prediction with un-supported dimension: {}.".format(center_heatmap.dim())
)
if offsets.dim() != 3:
raise ValueError("Offset prediction with un-supported dimension: {}.".format(offsets.dim()))
if foreground_mask is not None:
if foreground_mask.dim() != 3 and foreground_mask.size(0) != 1:
raise ValueError(
"Foreground prediction with un-supported shape: {}.".format(sem_seg.size())
)
thing_seg = foreground_mask
else:
# inference from semantic segmentation
thing_seg = torch.zeros_like(sem_seg)
for thing_class in list(thing_ids):
thing_seg[sem_seg == thing_class] = 1
instance, center = get_instance_segmentation(
sem_seg,
center_heatmap,
offsets,
thing_seg,
thing_ids,
threshold=threshold,
nms_kernel=nms_kernel,
top_k=top_k,
)
panoptic = merge_semantic_and_instance(
sem_seg, instance, thing_seg, label_divisor, thing_ids, stuff_area, void_label
)
return panoptic, center
|