Delete gradioapptest.py
Browse files- gradioapptest.py +0 -431
gradioapptest.py
DELETED
|
@@ -1,431 +0,0 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
"""GradioAppTest.ipynb
|
| 3 |
-
|
| 4 |
-
Automatically generated by Colaboratory.
|
| 5 |
-
|
| 6 |
-
Original file is located at
|
| 7 |
-
https://colab.research.google.com/drive/1QhxoNhhM_kcaoQOyz5hsNWLcf2m2L225
|
| 8 |
-
"""
|
| 9 |
-
|
| 10 |
-
!pip install gradio
|
| 11 |
-
!pip install transformers
|
| 12 |
-
|
| 13 |
-
import gradio as gr
|
| 14 |
-
from transformers import pipeline
|
| 15 |
-
|
| 16 |
-
"""## JSON"""
|
| 17 |
-
|
| 18 |
-
# Define the process that the models will be trained for
|
| 19 |
-
trainedProcess = "praksa"
|
| 20 |
-
trainedProcessJSON = "Praksa"
|
| 21 |
-
|
| 22 |
-
json = [
|
| 23 |
-
{
|
| 24 |
-
"name": "Praksa",
|
| 25 |
-
"phases": [
|
| 26 |
-
{
|
| 27 |
-
"name": "Odabir preferencija",
|
| 28 |
-
"alias": ["Prijava prakse", "Odabir zadatka", "Prvi korak"],
|
| 29 |
-
"description": "Odabir preferencija je prvi korak u procesu polaganja prakse. Zahtjeva da student odabere zadatak sa popisa...",
|
| 30 |
-
"duration": "1 mjesec",
|
| 31 |
-
},
|
| 32 |
-
{
|
| 33 |
-
"name": "Ispunjavanje prijavnice",
|
| 34 |
-
"description": "Ispunjavanje prijavnice je drugi korak u procesu polaganja prakse. Student mora ispuniti prijavnicu koja se nalazi na stranici kolegija...",
|
| 35 |
-
"duration": "1 tjedan",
|
| 36 |
-
},
|
| 37 |
-
{
|
| 38 |
-
"name": "Predaja dnevnika prakse",
|
| 39 |
-
"alias": ["Završetak prakse", "Dnevnik"],
|
| 40 |
-
"description": "Predaja dnevnika prakse zadnji je korak u procesu polaganja prakse. S završetkom rada, student predaje dnevnik prakse na stranicu kolegija...",
|
| 41 |
-
"duration": "3 dana",
|
| 42 |
-
},
|
| 43 |
-
],
|
| 44 |
-
"duration": "2 mjeseca",
|
| 45 |
-
},
|
| 46 |
-
{
|
| 47 |
-
"name": "Izrada završnog rada",
|
| 48 |
-
"phases": [
|
| 49 |
-
{
|
| 50 |
-
"name": "Prijava teme",
|
| 51 |
-
"alias": ["Prvi korak"],
|
| 52 |
-
"description": "Prvi korak u procesu izrade završnog rada je prijava teme. Zahtjeva da student odabere mentora te prijavi temu sa popisa...",
|
| 53 |
-
"duration": "5 dana",
|
| 54 |
-
},
|
| 55 |
-
{
|
| 56 |
-
"name": "Ispuna obrasca",
|
| 57 |
-
"description": "Student ispunjava obrazac sa prijavljenom temom...",
|
| 58 |
-
"duration": "4 dana",
|
| 59 |
-
},
|
| 60 |
-
{
|
| 61 |
-
"name": "Obrana rada",
|
| 62 |
-
"description": "Student brani svoj rad pred komosijom...",
|
| 63 |
-
"duration": "1 sat",
|
| 64 |
-
},
|
| 65 |
-
],
|
| 66 |
-
"duration": "3 mjeseca",
|
| 67 |
-
},
|
| 68 |
-
]
|
| 69 |
-
|
| 70 |
-
# If tasks do not contain alias propery, assign an empty one to them
|
| 71 |
-
for process in json:
|
| 72 |
-
for task in process["phases"]:
|
| 73 |
-
if "alias" not in task:
|
| 74 |
-
task["alias"] = []
|
| 75 |
-
|
| 76 |
-
"""## User intent recognition model
|
| 77 |
-
|
| 78 |
-
CPU ~6m
|
| 79 |
-
|
| 80 |
-
GPU ~3m
|
| 81 |
-
"""
|
| 82 |
-
|
| 83 |
-
# Define training epochs
|
| 84 |
-
training_epochs = 10
|
| 85 |
-
label_size = 6
|
| 86 |
-
|
| 87 |
-
# Define dataset URL for training
|
| 88 |
-
UIDatasetURL = 'https://docs.google.com/spreadsheets/d/e/2PACX-1vSPR-FPTMBcYRynP4JdwYQQ8dAhSx1x8i1LPckUcuIUUlrWT82b5Thqb1bBNnPeGJPxxX1CJAlFSd6F/pub?output=xlsx'
|
| 89 |
-
|
| 90 |
-
# Will require runetime restart on Google colab (sometimes, idk)
|
| 91 |
-
!pip install tensorflow_text
|
| 92 |
-
|
| 93 |
-
!pip install text-hr
|
| 94 |
-
|
| 95 |
-
"""### Data loading"""
|
| 96 |
-
|
| 97 |
-
import tensorflow as tf
|
| 98 |
-
import tensorflow_text as tft
|
| 99 |
-
import tensorflow_hub as tfh
|
| 100 |
-
import pandas as pd
|
| 101 |
-
import numpy as np
|
| 102 |
-
import seaborn as sns
|
| 103 |
-
import matplotlib.pyplot as plt
|
| 104 |
-
|
| 105 |
-
# Text preprocessor for bert based models
|
| 106 |
-
preprocessor = tfh.KerasLayer('https://tfhub.dev/google/universal-sentence-encoder-cmlm/multilingual-preprocess/2')
|
| 107 |
-
|
| 108 |
-
# Language Agnostic BERT sentence encoder
|
| 109 |
-
model = tfh.KerasLayer('https://tfhub.dev/google/LaBSE/2')
|
| 110 |
-
|
| 111 |
-
# Read the data
|
| 112 |
-
import pandas as pd
|
| 113 |
-
data = pd.read_excel(UIDatasetURL)
|
| 114 |
-
|
| 115 |
-
columns = ['text', 'intent', 'process']
|
| 116 |
-
data.columns = columns
|
| 117 |
-
|
| 118 |
-
data = data[data["process"] == trainedProcess].drop(columns="process")
|
| 119 |
-
|
| 120 |
-
"""#### Category merging"""
|
| 121 |
-
|
| 122 |
-
# Convert categories to codes
|
| 123 |
-
data['intent'] = data['intent'].astype('category')
|
| 124 |
-
data['intent_codes'] = data['intent'].cat.codes
|
| 125 |
-
|
| 126 |
-
# Display the distribution of codes
|
| 127 |
-
values = data['intent'].value_counts()
|
| 128 |
-
plt.stem(values)
|
| 129 |
-
|
| 130 |
-
"""#### Normalize data
|
| 131 |
-
|
| 132 |
-
### Text preprocessing
|
| 133 |
-
|
| 134 |
-
1. Remove punctuation
|
| 135 |
-
2. Lowercase the text
|
| 136 |
-
3. Apply tokenization
|
| 137 |
-
4. Remove stopwords
|
| 138 |
-
5. Apply lemmatizer
|
| 139 |
-
"""
|
| 140 |
-
|
| 141 |
-
import string
|
| 142 |
-
import re
|
| 143 |
-
import nltk
|
| 144 |
-
import text_hr
|
| 145 |
-
|
| 146 |
-
nltk.download('stopwords')
|
| 147 |
-
nltk.download('wordnet')
|
| 148 |
-
nltk.download('omw-1.4')
|
| 149 |
-
from nltk.stem.porter import PorterStemmer
|
| 150 |
-
from nltk.stem import WordNetLemmatizer
|
| 151 |
-
|
| 152 |
-
def remove_punctuation(text):
|
| 153 |
-
return "".join([i for i in text if i not in string.punctuation])
|
| 154 |
-
|
| 155 |
-
def tokenization(text):
|
| 156 |
-
return re.split(r"\s+",text)
|
| 157 |
-
|
| 158 |
-
stopwords = nltk.corpus.stopwords.words('english')
|
| 159 |
-
def remove_stopwords(text):
|
| 160 |
-
return [i for i in text if i not in stopwords]
|
| 161 |
-
|
| 162 |
-
porter_stemmer = PorterStemmer()
|
| 163 |
-
def stemming(text):
|
| 164 |
-
return [porter_stemmer.stem(word) for word in text]
|
| 165 |
-
|
| 166 |
-
wordnet_lemmatizer = WordNetLemmatizer()
|
| 167 |
-
def lemmatizer(text):
|
| 168 |
-
return [wordnet_lemmatizer.lemmatize(word) for word in text]
|
| 169 |
-
|
| 170 |
-
data['text'] = data['text']\
|
| 171 |
-
.apply(lambda x: remove_punctuation(x))\
|
| 172 |
-
.apply(lambda x: x.lower())\
|
| 173 |
-
.apply(lambda x: tokenization(x))\
|
| 174 |
-
.apply(lambda x: lemmatizer(x))
|
| 175 |
-
|
| 176 |
-
stop_words_list_hr = []
|
| 177 |
-
for word_base, l_key, cnt, _suff_id, wform_key, wform in text_hr.get_all_std_words():
|
| 178 |
-
if word_base is not None: stop_words_list_hr.append(word_base)
|
| 179 |
-
if wform is not None: stop_words_list_hr.append(wform)
|
| 180 |
-
|
| 181 |
-
stop_words_list_hr = list(dict.fromkeys(stop_words_list_hr))
|
| 182 |
-
|
| 183 |
-
def remove_stopwords_hr(text):
|
| 184 |
-
output = [i for i in text if i not in stop_words_list_hr]
|
| 185 |
-
return output
|
| 186 |
-
|
| 187 |
-
data['text'] = data['text'].apply(lambda x: remove_stopwords_hr(x))
|
| 188 |
-
|
| 189 |
-
data['text'] = data['text'].str.join(" ")
|
| 190 |
-
|
| 191 |
-
"""### Split validation and training data
|
| 192 |
-
|
| 193 |
-
Train 75%, validation 25%
|
| 194 |
-
"""
|
| 195 |
-
|
| 196 |
-
codes = data['intent_codes'].unique()
|
| 197 |
-
|
| 198 |
-
# Variable to understand the meaning behind codes
|
| 199 |
-
CODES_REPR = data[["intent_codes", "intent"]].drop_duplicates().sort_values("intent_codes")
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
def codeToIntent(prediction) -> str:
|
| 203 |
-
""" Returns the intent of the prediction, not the code """
|
| 204 |
-
return CODES_REPR[CODES_REPR["intent_codes"] == prediction.argmax()].iloc[0]["intent"]
|
| 205 |
-
|
| 206 |
-
preprocessed_validation_data = pd.DataFrame(columns=data.columns)
|
| 207 |
-
preprocessed_train_data = pd.DataFrame(columns=data.columns)
|
| 208 |
-
|
| 209 |
-
for c in codes:
|
| 210 |
-
sample = data[data['intent_codes'] == c]
|
| 211 |
-
sample = sample.sample(frac=1)
|
| 212 |
-
# val = sample.sample(frac=0.25)
|
| 213 |
-
val = sample.sample(frac=0)
|
| 214 |
-
train = pd.concat([sample, val]).drop_duplicates(keep=False)
|
| 215 |
-
preprocessed_validation_data = preprocessed_validation_data.append(val, ignore_index=True)
|
| 216 |
-
preprocessed_train_data = preprocessed_train_data.append(train, ignore_index=True)
|
| 217 |
-
|
| 218 |
-
# Preprocessed google translation data
|
| 219 |
-
train_data_eng = preprocessed_train_data[['text', 'intent_codes']]
|
| 220 |
-
train_data_eng.columns = ['text', 'intent_codes']
|
| 221 |
-
|
| 222 |
-
validation_data_eng = preprocessed_validation_data[['text', 'intent_codes']]
|
| 223 |
-
validation_data_eng.columns = ['text', 'intent_codes']
|
| 224 |
-
|
| 225 |
-
def df_to_dataset(df, shuffle=True, batch_size=16):
|
| 226 |
-
df = df.copy()
|
| 227 |
-
labels = df.pop('intent_codes')
|
| 228 |
-
lables_cat = tf.keras.utils.to_categorical(labels, label_size)
|
| 229 |
-
dataset = tf.data.Dataset.from_tensor_slices((dict(df), lables_cat))
|
| 230 |
-
if shuffle:
|
| 231 |
-
dataset = dataset.shuffle(buffer_size=len(df))
|
| 232 |
-
dataset = dataset.batch(batch_size).prefetch(batch_size)
|
| 233 |
-
return dataset
|
| 234 |
-
|
| 235 |
-
_validation = train_data_eng
|
| 236 |
-
train_data_eng = df_to_dataset(train_data_eng)
|
| 237 |
-
|
| 238 |
-
# validation_data_eng = df_to_dataset(validation_data_eng)
|
| 239 |
-
validation_data_eng = df_to_dataset(_validation)
|
| 240 |
-
|
| 241 |
-
"""### Model definition and training
|
| 242 |
-
|
| 243 |
-
2 epochs training (testing purposes)
|
| 244 |
-
"""
|
| 245 |
-
|
| 246 |
-
# Model builder
|
| 247 |
-
def model_build():
|
| 248 |
-
inputs = tf.keras.layers.Input(shape=(), dtype=tf.string, name='text')
|
| 249 |
-
encoded_input = preprocessor(inputs)
|
| 250 |
-
encoder_outputs = model(encoded_input)
|
| 251 |
-
|
| 252 |
-
x = encoder_outputs['pooled_output']
|
| 253 |
-
x = tf.keras.layers.Dropout(0.1)(x)
|
| 254 |
-
x = tf.keras.layers.Dense(128, activation='relu')(x)
|
| 255 |
-
x = tf.keras.layers.Dropout(0.7)(x)
|
| 256 |
-
outputs = tf.keras.layers.Dense(label_size, activation='softmax', name='classifier')(x)
|
| 257 |
-
|
| 258 |
-
return tf.keras.Model(inputs, outputs)
|
| 259 |
-
|
| 260 |
-
# Build a model with preprocessed data
|
| 261 |
-
model_eng = model_build()
|
| 262 |
-
model_eng.compile(
|
| 263 |
-
optimizer = tf.keras.optimizers.Adam(0.001),
|
| 264 |
-
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True),
|
| 265 |
-
metrics = tf.keras.metrics.CategoricalAccuracy()
|
| 266 |
-
)
|
| 267 |
-
|
| 268 |
-
eng_history = model_eng.fit(
|
| 269 |
-
train_data_eng,
|
| 270 |
-
epochs = training_epochs,
|
| 271 |
-
batch_size = 16,
|
| 272 |
-
validation_data = validation_data_eng,
|
| 273 |
-
)
|
| 274 |
-
|
| 275 |
-
"""## Data extraction pipeline"""
|
| 276 |
-
|
| 277 |
-
!pip install transformers
|
| 278 |
-
|
| 279 |
-
from transformers import pipeline
|
| 280 |
-
|
| 281 |
-
pipe = pipeline("token-classification", model="rkrstacic/bpmn-task-extractor")
|
| 282 |
-
|
| 283 |
-
"""## Sentence similarity"""
|
| 284 |
-
|
| 285 |
-
!pip install -U sentence-transformers
|
| 286 |
-
|
| 287 |
-
import numpy as np
|
| 288 |
-
from typing import List, Dict
|
| 289 |
-
|
| 290 |
-
# Function that shows the result
|
| 291 |
-
def predictNER(text: str) -> Dict:
|
| 292 |
-
currentString = "".join([x["word"] for x in pipe(text) if x["entity"] != "LABEL_0"])
|
| 293 |
-
|
| 294 |
-
# Return dictionary without empty values
|
| 295 |
-
return { "Task": currentString.replace("▁", " ")[1:] }
|
| 296 |
-
|
| 297 |
-
from sentence_transformers import SentenceTransformer, util
|
| 298 |
-
|
| 299 |
-
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 300 |
-
|
| 301 |
-
from typing import List
|
| 302 |
-
import torch
|
| 303 |
-
|
| 304 |
-
def getTaskSimilarityIndex(flatIndex: int, tasks) -> int:
|
| 305 |
-
""" Get task index based on the flatten task list """
|
| 306 |
-
for index, task in enumerate(tasks):
|
| 307 |
-
if flatIndex <= len(task["alias"]):
|
| 308 |
-
return index
|
| 309 |
-
|
| 310 |
-
flatIndex -= len(task["alias"]) + 1
|
| 311 |
-
|
| 312 |
-
return -1
|
| 313 |
-
|
| 314 |
-
def getFlattenTasks(tasks) -> List[str]:
|
| 315 |
-
""" Returns the flatten version of task names and their aliases """
|
| 316 |
-
resTasks = []
|
| 317 |
-
|
| 318 |
-
for task in tasks:
|
| 319 |
-
resTasks.append(task["name"])
|
| 320 |
-
resTasks = resTasks + task["alias"]
|
| 321 |
-
|
| 322 |
-
return resTasks
|
| 323 |
-
|
| 324 |
-
def taskSimilarity(text: str, tasks) -> int:
|
| 325 |
-
""" Returns the task index which is the most similar to the text """
|
| 326 |
-
return getTaskSimilarityIndex(torch.argmax(util.pytorch_cos_sim(
|
| 327 |
-
model.encode(text, convert_to_tensor=True),
|
| 328 |
-
model.encode(getFlattenTasks(tasks), convert_to_tensor=True)
|
| 329 |
-
)).item(), tasks)
|
| 330 |
-
|
| 331 |
-
"""## Using the user intent model"""
|
| 332 |
-
|
| 333 |
-
def preprocessText(text: str) -> str:
|
| 334 |
-
""" Do the same preprocessing as the UI model training input data """
|
| 335 |
-
text = remove_punctuation(text)
|
| 336 |
-
text = text.lower()
|
| 337 |
-
text = tokenization(text)
|
| 338 |
-
text = lemmatizer(text)
|
| 339 |
-
text = remove_stopwords_hr(text)
|
| 340 |
-
|
| 341 |
-
return " ".join(text)
|
| 342 |
-
|
| 343 |
-
def predict_intent(text: str) -> str:
|
| 344 |
-
""" Predict the text intent based on the abovetrained model """
|
| 345 |
-
return codeToIntent(model_eng.predict([preprocessText(text)], verbose=False))
|
| 346 |
-
|
| 347 |
-
def getPhases(phases) -> str:
|
| 348 |
-
""" P1: Returns the formatted phases """
|
| 349 |
-
phases = [phase["name"].lower() for phase in phases]
|
| 350 |
-
return ', '.join(phases[:-1]) + ' i ' + phases[-1]
|
| 351 |
-
|
| 352 |
-
# Define functions that handle output text formatting
|
| 353 |
-
|
| 354 |
-
def getP1String(process) -> str:
|
| 355 |
-
return f"Faze procesa za proces '{process['name']}' su: {getPhases(process['phases'])}"
|
| 356 |
-
|
| 357 |
-
def getP2String(process) -> str:
|
| 358 |
-
return f"Proces '{process['name']}' traje {process['duration']}"
|
| 359 |
-
|
| 360 |
-
def getP3String(taskName: str, task) -> str:
|
| 361 |
-
return f"Kratki opis '{taskName}': {task['description']}"
|
| 362 |
-
|
| 363 |
-
def getP4String(taskName: str, task) -> str:
|
| 364 |
-
return f"Proces '{taskName}' traje {task['duration']}"
|
| 365 |
-
|
| 366 |
-
def getP5String(taskIndex: int, taskName: str, process) -> str:
|
| 367 |
-
if len(process["phases"]) <= taskIndex + 1:
|
| 368 |
-
return f"'{taskName}' je zadnji korak u procesu '{process['name']}'"
|
| 369 |
-
|
| 370 |
-
return f"Nakon '{taskName}' je '{process['phases'][taskIndex + 1]['name'].lower()}'"
|
| 371 |
-
|
| 372 |
-
def getP6String() -> str:
|
| 373 |
-
return "Nažalost, ne razumijem Vaše pitanje"
|
| 374 |
-
|
| 375 |
-
def print_result(text: str, process) -> None:
|
| 376 |
-
""" Chatbot output messages based on intent """
|
| 377 |
-
intent = predict_intent(text)
|
| 378 |
-
taskIndex = taskSimilarity(text, process["phases"])
|
| 379 |
-
task = process["phases"][taskIndex]
|
| 380 |
-
taskName = task["name"].lower()
|
| 381 |
-
|
| 382 |
-
# P1: Koje su faze
|
| 383 |
-
if intent == 'P1':
|
| 384 |
-
return(getP1String(process))
|
| 385 |
-
|
| 386 |
-
# P2: Koliko traje cijeli proces
|
| 387 |
-
elif intent == 'P2':
|
| 388 |
-
return(getP2String(process))
|
| 389 |
-
|
| 390 |
-
# P3: Kako ide odabir preferencija?
|
| 391 |
-
elif intent == 'P3':
|
| 392 |
-
return(getP3String(taskName, task))
|
| 393 |
-
|
| 394 |
-
# P4: Koliko traje {task}
|
| 395 |
-
elif intent == 'P4':
|
| 396 |
-
return(getP4String(taskName, task))
|
| 397 |
-
|
| 398 |
-
# P5: Što je nakon {task}
|
| 399 |
-
elif intent == 'P5':
|
| 400 |
-
return(getP5String(taskIndex, taskName, process))
|
| 401 |
-
|
| 402 |
-
# Ništa od navedenog
|
| 403 |
-
else:
|
| 404 |
-
return(getP6String())
|
| 405 |
-
|
| 406 |
-
def chatbot(input_text) -> None:
|
| 407 |
-
""" By: Rafael Krstačić """
|
| 408 |
-
processName = trainedProcessJSON
|
| 409 |
-
currentProcess = None
|
| 410 |
-
|
| 411 |
-
for process in json:
|
| 412 |
-
if process["name"] == processName:
|
| 413 |
-
currentProcess = process
|
| 414 |
-
break
|
| 415 |
-
else:
|
| 416 |
-
raise KeyError("Process does not exist in json")
|
| 417 |
-
|
| 418 |
-
return print_result(input_text, currentProcess)
|
| 419 |
-
|
| 420 |
-
"""## Gradio app"""
|
| 421 |
-
|
| 422 |
-
chatbot("Koliko traje predaja dnevnika prakse")
|
| 423 |
-
|
| 424 |
-
iface = gr.Interface(
|
| 425 |
-
fn=chatbot,
|
| 426 |
-
inputs="text",
|
| 427 |
-
outputs=["text"],
|
| 428 |
-
title="Sentiment Analysis"
|
| 429 |
-
)
|
| 430 |
-
|
| 431 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|