File size: 11,060 Bytes
fc016ef 6f48975 fc016ef 00ec3d3 fc016ef 6f48975 fc016ef 6f48975 fc016ef 6f48975 fc016ef 6f48975 fc016ef 6f48975 fc016ef 6f48975 fc016ef 6f48975 fc016ef 6f48975 fc016ef 00ec3d3 6f48975 00ec3d3 6f48975 00ec3d3 6f48975 00ec3d3 6f48975 00ec3d3 fc016ef 6f48975 00ec3d3 6f48975 00ec3d3 6f48975 00ec3d3 fc016ef 00ec3d3 fc016ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# === Gradio Demo App: gradio_app.py ===
# This script creates a user-friendly web interface to demonstrate the
# multimodal moderation capabilities of the main FastAPI server.
#
# It interacts with the /v3/moderations endpoint.
# --------------------------------------------------------------------
import base64
import os
import json
import logging
import time
import gradio as gr
import httpx
from dotenv import load_dotenv
# --- Configuration ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
load_dotenv()
# The URL of your running FastAPI server.
# It's crucial to set this in your .env file for deployment.
API_BASE_URL = os.environ.get("API_BASE_URL", "")
MODERATION_ENDPOINT = f"{API_BASE_URL}/v3/moderations"
# --- Full list of Whisper V3 supported languages ---
# Mapping user-friendly names to ISO 639-1 codes
WHISPER_LANGUAGES = {
"English": "en", "Chinese": "zh", "German": "de", "Spanish": "es", "Russian": "ru",
"Korean": "ko", "French": "fr", "Japanese": "ja", "Portuguese": "pt", "Turkish": "tr",
"Polish": "pl", "Catalan": "ca", "Dutch": "nl", "Arabic": "ar", "Swedish": "sv",
"Italian": "it", "Indonesian": "id", "Hindi": "hi", "Finnish": "fi", "Vietnamese": "vi",
"Hebrew": "he", "Ukrainian": "uk", "Greek": "el", "Malay": "ms", "Czech": "cs",
"Romanian": "ro", "Danish": "da", "Hungarian": "hu", "Tamil": "ta", "Norwegian": "no",
"Thai": "th", "Urdu": "ur", "Croatian": "hr", "Bulgarian": "bg", "Lithuanian": "lt",
"Latin": "la", "Maori": "mi", "Malayalam": "ml", "Welsh": "cy", "Slovak": "sk",
"Telugu": "te", "Persian": "fa", "Latvian": "lv", "Bengali": "bn", "Serbian": "sr",
"Azerbaijani": "az", "Slovenian": "sl", "Kannada": "kn", "Estonian": "et", "Macedonian": "mk",
"Breton": "br", "Basque": "eu", "Icelandic": "is", "Armenian": "hy", "Nepali": "ne",
"Mongolian": "mn", "Bosnian": "bs", "Kazakh": "kk", "Albanian": "sq", "Swahili": "sw",
"Galician": "gl", "Marathi": "mr", "Punjabi": "pa", "Sinhala": "si", "Khmer": "km",
"Shona": "sn", "Yoruba": "yo", "Somali": "so", "Afrikaans": "af", "Occitan": "oc",
"Georgian": "ka", "Belarusian": "be", "Tajik": "tg", "Sindhi": "sd", "Gujarati": "gu",
"Amharic": "am", "Yiddish": "yi", "Lao": "lo", "Uzbek": "uz", "Faroese": "fo",
"Haitian Creole": "ht", "Pashto": "ps", "Turkmen": "tk", "Nynorsk": "nn", "Maltese": "mt",
"Sanskrit": "sa", "Luxembourgish": "lb", "Myanmar (Burmese)": "my", "Tibetan": "bo",
"Tagalog": "tl", "Malagasy": "mg", "Assamese": "as", "Tatar": "tt", "Hawaiian": "haw",
"Lingala": "ln", "Hausa": "ha", "Bashkir": "ba", "Javanese": "jw", "Sundanese": "su",
}
# Sort languages alphabetically for the dropdown
SORTED_LANGUAGES = dict(sorted(WHISPER_LANGUAGES.items()))
# --- Helper Function ---
def file_to_base64(filepath: str) -> str:
"""Reads a file and converts it to a base64 encoded string."""
if not filepath:
return None
try:
with open(filepath, "rb") as f:
encoded_string = base64.b64encode(f.read()).decode("utf-8")
return encoded_string
except Exception as e:
logging.error(f"Failed to convert file {filepath} to base64: {e}")
return None
# --- Core Logic ---
def moderate_content(text_input, image_input, video_input, audio_input, language_full_name):
"""
Prepares the payload, calls the moderation API, and formats the response.
"""
if not any([text_input, image_input, video_input, audio_input]):
return "Please provide at least one input (text, image, video, or audio).", None
logging.info("Preparing payload for moderation API...")
payload = { "model": "nai-moderation-latest" }
if text_input: payload["input"] = text_input
if image_b64 := file_to_base64(image_input): payload["image"] = image_b64
if video_b64 := file_to_base64(video_input): payload["video"] = video_b64
if audio_b64 := file_to_base64(audio_input):
payload["voice"] = audio_b64
language_code = SORTED_LANGUAGES.get(language_full_name, "en")
payload["language"] = language_code
logging.info(f"Audio detected. Using language: {language_full_name} ({language_code})")
logging.info(f"Sending request to {MODERATION_ENDPOINT} with inputs: {list(payload.keys())}")
summary_output = "An error occurred. Please check the logs."
full_response_output = {}
latency_ms = None
try:
with httpx.Client(timeout=180.0) as client:
start_time = time.monotonic()
response = client.post(MODERATION_ENDPOINT, json=payload)
latency_ms = (time.monotonic() - start_time) * 1000
logging.info(f"API response received in {latency_ms:.2f} ms with status code {response.status_code}")
response.raise_for_status()
data = response.json()
full_response_output = data # <-- MODIFIED: Assign raw data, without adding latency
if not data.get("results"):
summary_output = "API returned an empty result. This might happen if media processing fails (e.g., a video with no frames)."
return summary_output, full_response_output
result = data["results"][0]
status = "π¨ FLAGGED π¨" if result["flagged"] else "β
SAFE β
"
reason = result.get("reason") or "N/A"
transcribed = result.get("transcribed_text") or "N/A"
flagged_categories = [cat for cat, flagged in result.get("categories", {}).items() if flagged]
categories_str = ", ".join(flagged_categories) if flagged_categories else "None"
summary_output = f"""
**API Latency:** {latency_ms:.2f} ms
---
**Moderation Status:** {status}
---
**Reason:** {reason}
---
**Flagged Categories:** {categories_str}
---
**Transcribed Text (from audio):**
{transcribed}
"""
logging.info("Successfully parsed moderation response.")
except httpx.HTTPStatusError as e:
user_message = "The moderation service returned an error."
error_details = ""
latency_str = f"**API Latency:** {latency_ms:.2f} ms" if latency_ms is not None else ""
try:
error_json = e.response.json()
detail = error_json.get("detail", "No specific error detail provided.")
error_details = f"**Reason:** {detail}"
# <-- MODIFIED: Latency removed from this dictionary
full_response_output = {"error": "Backend API Error", "status_code": e.response.status_code, "details": error_json}
except (json.JSONDecodeError, AttributeError):
error_details = f"**Raw Server Response:**\n```\n{e.response.text}\n```"
# <-- MODIFIED: Latency removed from this dictionary
full_response_output = {"error": "Backend API Error", "status_code": e.response.status_code, "details": e.response.text}
summary_output = f"""
**π« Error from Moderation Service (HTTP {e.response.status_code})**
---
{latency_str}
{user_message}
{error_details}
"""
logging.error(f"HTTP Status Error: {e.response.status_code} - Response: {e.response.text}")
except httpx.RequestError as e:
if latency_ms is None:
latency_ms = (time.monotonic() - start_time) * 1000 if 'start_time' in locals() else 0
summary_output = f"""
**π Connection Error**
---
Could not connect to the API server at `{API_BASE_URL}`. The request failed after {latency_ms:.0f} ms.
Please ensure the backend server is running and the URL is configured correctly in your `.env` file.
"""
# <-- MODIFIED: Latency removed from this dictionary
full_response_output = {"error": "Connection Error", "url": API_BASE_URL, "details": str(e)}
logging.error(f"Request Error: Could not connect to {API_BASE_URL}. Details: {e}")
except Exception as e:
summary_output = f"""
**π₯ An Unexpected Application Error Occurred**
---
An error happened within the Gradio application itself.
Please check the application logs for more details.
**Error Type:** `{type(e).__name__}`
"""
full_response_output = {"error": "Gradio App Internal Error", "type": type(e).__name__, "details": str(e)}
logging.error(f"Unexpected Error in Gradio App: {e}", exc_info=True)
return summary_output, full_response_output
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
gr.Markdown(
"""
# π€ Multimodal Content Moderation Demo
This demo uses a custom API server to perform advanced content moderation.
You can provide any combination of text, image, video, and audio. The system will analyze all inputs together.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 1. Provide Your Content")
text_input = gr.Textbox(label="Text Input", lines=4, placeholder="Enter any text here...")
image_input = gr.Image(label="Image Input", type="filepath")
video_input = gr.Video(label="Video Input")
audio_input = gr.Audio(label="Voice/Audio Input", type="filepath")
language_input = gr.Dropdown(
label="Audio Language (if providing audio)",
choices=list(SORTED_LANGUAGES.keys()),
value="English",
interactive=True
)
submit_button = gr.Button("Moderate Content", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### 2. See the Results")
result_output = gr.Markdown(label="Moderation Summary")
full_response_output = gr.JSON(label="Full API Response")
submit_button.click(
fn=moderate_content,
inputs=[text_input, image_input, video_input, audio_input, language_input],
outputs=[result_output, full_response_output]
)
gr.Examples(
examples=[
["This is a test of the system with safe text.", None, None, None, "English"],
["I am going to kill the process on my computer.", None, None, None, "English"],
],
inputs=[text_input, image_input, video_input, audio_input, language_input],
outputs=[result_output, full_response_output],
fn=moderate_content
)
if __name__ == "__main__":
logging.info(f"Connecting to API server at: {API_BASE_URL}")
if API_BASE_URL == "http://127.0.0.1:8000":
logging.warning("API_BASE_URL is set to the default local address. Make sure this is correct or set it in your .env file.")
demo.launch(server_name="0.0.0.0", server_port=7860) |