File size: 11,060 Bytes
fc016ef
 
 
 
 
 
 
 
 
 
 
6f48975
fc016ef
 
 
 
 
 
 
 
 
 
 
 
 
 
00ec3d3
fc016ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f48975
 
 
 
 
fc016ef
6f48975
fc016ef
 
 
 
 
 
 
6f48975
fc016ef
 
 
6f48975
fc016ef
6f48975
 
 
 
fc016ef
 
6f48975
fc016ef
 
 
 
 
 
 
 
 
 
 
 
 
 
6f48975
 
fc016ef
 
 
 
 
 
 
 
 
6f48975
fc016ef
 
00ec3d3
 
6f48975
 
00ec3d3
 
 
 
6f48975
00ec3d3
 
 
6f48975
00ec3d3
 
 
 
 
6f48975
 
00ec3d3
 
 
 
 
 
fc016ef
6f48975
 
 
00ec3d3
 
 
6f48975
00ec3d3
 
 
6f48975
00ec3d3
 
 
fc016ef
00ec3d3
 
 
 
 
 
 
 
 
 
fc016ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# === Gradio Demo App: gradio_app.py ===
# This script creates a user-friendly web interface to demonstrate the
# multimodal moderation capabilities of the main FastAPI server.
#
# It interacts with the /v3/moderations endpoint.
# --------------------------------------------------------------------

import base64
import os
import json
import logging
import time

import gradio as gr
import httpx
from dotenv import load_dotenv

# --- Configuration ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
load_dotenv()

# The URL of your running FastAPI server.
# It's crucial to set this in your .env file for deployment.
API_BASE_URL = os.environ.get("API_BASE_URL", "")
MODERATION_ENDPOINT = f"{API_BASE_URL}/v3/moderations"

# --- Full list of Whisper V3 supported languages ---
# Mapping user-friendly names to ISO 639-1 codes
WHISPER_LANGUAGES = {
    "English": "en", "Chinese": "zh", "German": "de", "Spanish": "es", "Russian": "ru",
    "Korean": "ko", "French": "fr", "Japanese": "ja", "Portuguese": "pt", "Turkish": "tr",
    "Polish": "pl", "Catalan": "ca", "Dutch": "nl", "Arabic": "ar", "Swedish": "sv",
    "Italian": "it", "Indonesian": "id", "Hindi": "hi", "Finnish": "fi", "Vietnamese": "vi",
    "Hebrew": "he", "Ukrainian": "uk", "Greek": "el", "Malay": "ms", "Czech": "cs",
    "Romanian": "ro", "Danish": "da", "Hungarian": "hu", "Tamil": "ta", "Norwegian": "no",
    "Thai": "th", "Urdu": "ur", "Croatian": "hr", "Bulgarian": "bg", "Lithuanian": "lt",
    "Latin": "la", "Maori": "mi", "Malayalam": "ml", "Welsh": "cy", "Slovak": "sk",
    "Telugu": "te", "Persian": "fa", "Latvian": "lv", "Bengali": "bn", "Serbian": "sr",
    "Azerbaijani": "az", "Slovenian": "sl", "Kannada": "kn", "Estonian": "et", "Macedonian": "mk",
    "Breton": "br", "Basque": "eu", "Icelandic": "is", "Armenian": "hy", "Nepali": "ne",
    "Mongolian": "mn", "Bosnian": "bs", "Kazakh": "kk", "Albanian": "sq", "Swahili": "sw",
    "Galician": "gl", "Marathi": "mr", "Punjabi": "pa", "Sinhala": "si", "Khmer": "km",
    "Shona": "sn", "Yoruba": "yo", "Somali": "so", "Afrikaans": "af", "Occitan": "oc",
    "Georgian": "ka", "Belarusian": "be", "Tajik": "tg", "Sindhi": "sd", "Gujarati": "gu",
    "Amharic": "am", "Yiddish": "yi", "Lao": "lo", "Uzbek": "uz", "Faroese": "fo",
    "Haitian Creole": "ht", "Pashto": "ps", "Turkmen": "tk", "Nynorsk": "nn", "Maltese": "mt",
    "Sanskrit": "sa", "Luxembourgish": "lb", "Myanmar (Burmese)": "my", "Tibetan": "bo",
    "Tagalog": "tl", "Malagasy": "mg", "Assamese": "as", "Tatar": "tt", "Hawaiian": "haw",
    "Lingala": "ln", "Hausa": "ha", "Bashkir": "ba", "Javanese": "jw", "Sundanese": "su",
}
# Sort languages alphabetically for the dropdown
SORTED_LANGUAGES = dict(sorted(WHISPER_LANGUAGES.items()))


# --- Helper Function ---
def file_to_base64(filepath: str) -> str:
    """Reads a file and converts it to a base64 encoded string."""
    if not filepath:
        return None
    try:
        with open(filepath, "rb") as f:
            encoded_string = base64.b64encode(f.read()).decode("utf-8")
        return encoded_string
    except Exception as e:
        logging.error(f"Failed to convert file {filepath} to base64: {e}")
        return None

# --- Core Logic ---
def moderate_content(text_input, image_input, video_input, audio_input, language_full_name):
    """
    Prepares the payload, calls the moderation API, and formats the response.
    """
    if not any([text_input, image_input, video_input, audio_input]):
        return "Please provide at least one input (text, image, video, or audio).", None

    logging.info("Preparing payload for moderation API...")
    payload = { "model": "nai-moderation-latest" }
    if text_input: payload["input"] = text_input
    if image_b64 := file_to_base64(image_input): payload["image"] = image_b64
    if video_b64 := file_to_base64(video_input): payload["video"] = video_b64
    if audio_b64 := file_to_base64(audio_input):
        payload["voice"] = audio_b64
        language_code = SORTED_LANGUAGES.get(language_full_name, "en")
        payload["language"] = language_code
        logging.info(f"Audio detected. Using language: {language_full_name} ({language_code})")

    logging.info(f"Sending request to {MODERATION_ENDPOINT} with inputs: {list(payload.keys())}")
    
    summary_output = "An error occurred. Please check the logs."
    full_response_output = {}
    latency_ms = None

    try:
        with httpx.Client(timeout=180.0) as client:
            start_time = time.monotonic()
            response = client.post(MODERATION_ENDPOINT, json=payload)
            latency_ms = (time.monotonic() - start_time) * 1000
            logging.info(f"API response received in {latency_ms:.2f} ms with status code {response.status_code}")
            
            response.raise_for_status()
            
            data = response.json()
            full_response_output = data # <-- MODIFIED: Assign raw data, without adding latency
            
            if not data.get("results"):
                summary_output = "API returned an empty result. This might happen if media processing fails (e.g., a video with no frames)."
                return summary_output, full_response_output

            result = data["results"][0]
            
            status = "🚨 FLAGGED 🚨" if result["flagged"] else "βœ… SAFE βœ…"
            reason = result.get("reason") or "N/A"
            transcribed = result.get("transcribed_text") or "N/A"
            flagged_categories = [cat for cat, flagged in result.get("categories", {}).items() if flagged]
            categories_str = ", ".join(flagged_categories) if flagged_categories else "None"

            summary_output = f"""
            **API Latency:** {latency_ms:.2f} ms
            ---
            **Moderation Status:** {status}
            ---
            **Reason:** {reason}
            ---
            **Flagged Categories:** {categories_str}
            ---
            **Transcribed Text (from audio):**
            {transcribed}
            """
            logging.info("Successfully parsed moderation response.")

    except httpx.HTTPStatusError as e:
        user_message = "The moderation service returned an error."
        error_details = ""
        latency_str = f"**API Latency:** {latency_ms:.2f} ms" if latency_ms is not None else ""
        
        try:
            error_json = e.response.json()
            detail = error_json.get("detail", "No specific error detail provided.")
            error_details = f"**Reason:** {detail}"
            # <-- MODIFIED: Latency removed from this dictionary
            full_response_output = {"error": "Backend API Error", "status_code": e.response.status_code, "details": error_json}
        except (json.JSONDecodeError, AttributeError):
            error_details = f"**Raw Server Response:**\n```\n{e.response.text}\n```"
            # <-- MODIFIED: Latency removed from this dictionary
            full_response_output = {"error": "Backend API Error", "status_code": e.response.status_code, "details": e.response.text}

        summary_output = f"""
        **🚫 Error from Moderation Service (HTTP {e.response.status_code})**
        ---
        {latency_str}

        {user_message}
        
        {error_details}
        """
        logging.error(f"HTTP Status Error: {e.response.status_code} - Response: {e.response.text}")
    
    except httpx.RequestError as e:
        if latency_ms is None:
            latency_ms = (time.monotonic() - start_time) * 1000 if 'start_time' in locals() else 0
        
        summary_output = f"""
        **πŸ”Œ Connection Error**
        ---
        Could not connect to the API server at `{API_BASE_URL}`. The request failed after {latency_ms:.0f} ms.
        
        Please ensure the backend server is running and the URL is configured correctly in your `.env` file.
        """
        # <-- MODIFIED: Latency removed from this dictionary
        full_response_output = {"error": "Connection Error", "url": API_BASE_URL, "details": str(e)}
        logging.error(f"Request Error: Could not connect to {API_BASE_URL}. Details: {e}")

    except Exception as e:
        summary_output = f"""
        **πŸ’₯ An Unexpected Application Error Occurred**
        ---
        An error happened within the Gradio application itself. 
        Please check the application logs for more details.
        
        **Error Type:** `{type(e).__name__}`
        """
        full_response_output = {"error": "Gradio App Internal Error", "type": type(e).__name__, "details": str(e)}
        logging.error(f"Unexpected Error in Gradio App: {e}", exc_info=True)
        
    return summary_output, full_response_output

# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
    gr.Markdown(
        """
        # πŸ€– Multimodal Content Moderation Demo
        This demo uses a custom API server to perform advanced content moderation.
        You can provide any combination of text, image, video, and audio. The system will analyze all inputs together.
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### 1. Provide Your Content")
            text_input = gr.Textbox(label="Text Input", lines=4, placeholder="Enter any text here...")
            image_input = gr.Image(label="Image Input", type="filepath")
            video_input = gr.Video(label="Video Input")
            audio_input = gr.Audio(label="Voice/Audio Input", type="filepath")
            
            language_input = gr.Dropdown(
                label="Audio Language (if providing audio)",
                choices=list(SORTED_LANGUAGES.keys()),
                value="English",
                interactive=True
            )

            submit_button = gr.Button("Moderate Content", variant="primary")
        
        with gr.Column(scale=2):
            gr.Markdown("### 2. See the Results")
            result_output = gr.Markdown(label="Moderation Summary")
            full_response_output = gr.JSON(label="Full API Response")

    submit_button.click(
        fn=moderate_content,
        inputs=[text_input, image_input, video_input, audio_input, language_input],
        outputs=[result_output, full_response_output]
    )
    
    gr.Examples(
        examples=[
            ["This is a test of the system with safe text.", None, None, None, "English"],
            ["I am going to kill the process on my computer.", None, None, None, "English"],
        ],
        inputs=[text_input, image_input, video_input, audio_input, language_input],
        outputs=[result_output, full_response_output],
        fn=moderate_content
    )

if __name__ == "__main__":
    logging.info(f"Connecting to API server at: {API_BASE_URL}")
    if API_BASE_URL == "http://127.0.0.1:8000":
        logging.warning("API_BASE_URL is set to the default local address. Make sure this is correct or set it in your .env file.")
    demo.launch(server_name="0.0.0.0", server_port=7860)