File size: 10,767 Bytes
fc016ef 00ec3d3 fc016ef 00ec3d3 fc016ef 00ec3d3 fc016ef 00ec3d3 fc016ef 00ec3d3 fc016ef 00ec3d3 fc016ef 00ec3d3 fc016ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# === Gradio Demo App: gradio_app.py ===
# This script creates a user-friendly web interface to demonstrate the
# multimodal moderation capabilities of the main FastAPI server.
#
# It interacts with the /v3/moderations endpoint.
# --------------------------------------------------------------------
import base64
import os
import json
import logging
import gradio as gr
import httpx
from dotenv import load_dotenv
# --- Configuration ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
load_dotenv()
# The URL of your running FastAPI server.
# It's crucial to set this in your .env file for deployment.
API_BASE_URL = os.environ.get("API_BASE_URL", "")
MODERATION_ENDPOINT = f"{API_BASE_URL}/v3/moderations"
# --- Full list of Whisper V3 supported languages ---
# Mapping user-friendly names to ISO 639-1 codes
WHISPER_LANGUAGES = {
"English": "en", "Chinese": "zh", "German": "de", "Spanish": "es", "Russian": "ru",
"Korean": "ko", "French": "fr", "Japanese": "ja", "Portuguese": "pt", "Turkish": "tr",
"Polish": "pl", "Catalan": "ca", "Dutch": "nl", "Arabic": "ar", "Swedish": "sv",
"Italian": "it", "Indonesian": "id", "Hindi": "hi", "Finnish": "fi", "Vietnamese": "vi",
"Hebrew": "he", "Ukrainian": "uk", "Greek": "el", "Malay": "ms", "Czech": "cs",
"Romanian": "ro", "Danish": "da", "Hungarian": "hu", "Tamil": "ta", "Norwegian": "no",
"Thai": "th", "Urdu": "ur", "Croatian": "hr", "Bulgarian": "bg", "Lithuanian": "lt",
"Latin": "la", "Maori": "mi", "Malayalam": "ml", "Welsh": "cy", "Slovak": "sk",
"Telugu": "te", "Persian": "fa", "Latvian": "lv", "Bengali": "bn", "Serbian": "sr",
"Azerbaijani": "az", "Slovenian": "sl", "Kannada": "kn", "Estonian": "et", "Macedonian": "mk",
"Breton": "br", "Basque": "eu", "Icelandic": "is", "Armenian": "hy", "Nepali": "ne",
"Mongolian": "mn", "Bosnian": "bs", "Kazakh": "kk", "Albanian": "sq", "Swahili": "sw",
"Galician": "gl", "Marathi": "mr", "Punjabi": "pa", "Sinhala": "si", "Khmer": "km",
"Shona": "sn", "Yoruba": "yo", "Somali": "so", "Afrikaans": "af", "Occitan": "oc",
"Georgian": "ka", "Belarusian": "be", "Tajik": "tg", "Sindhi": "sd", "Gujarati": "gu",
"Amharic": "am", "Yiddish": "yi", "Lao": "lo", "Uzbek": "uz", "Faroese": "fo",
"Haitian Creole": "ht", "Pashto": "ps", "Turkmen": "tk", "Nynorsk": "nn", "Maltese": "mt",
"Sanskrit": "sa", "Luxembourgish": "lb", "Myanmar (Burmese)": "my", "Tibetan": "bo",
"Tagalog": "tl", "Malagasy": "mg", "Assamese": "as", "Tatar": "tt", "Hawaiian": "haw",
"Lingala": "ln", "Hausa": "ha", "Bashkir": "ba", "Javanese": "jw", "Sundanese": "su",
}
# Sort languages alphabetically for the dropdown
SORTED_LANGUAGES = dict(sorted(WHISPER_LANGUAGES.items()))
# --- Helper Function ---
def file_to_base64(filepath: str) -> str:
"""Reads a file and converts it to a base64 encoded string."""
if not filepath:
return None
try:
with open(filepath, "rb") as f:
encoded_string = base64.b64encode(f.read()).decode("utf-8")
return encoded_string
except Exception as e:
logging.error(f"Failed to convert file {filepath} to base64: {e}")
return None
# --- Core Logic ---
def moderate_content(text_input, image_input, video_input, audio_input, language_full_name):
"""
Prepares the payload, calls the moderation API, and formats the response.
"""
if not any([text_input, image_input, video_input, audio_input]):
return "Please provide at least one input (text, image, video, or audio).", None
logging.info("Preparing payload for moderation API...")
payload = {
"model": "nai-moderation-latest" # This is the model name expected by our API
}
if text_input:
payload["input"] = text_input
image_b64 = file_to_base64(image_input)
if image_b64:
payload["image"] = image_b64
video_b64 = file_to_base64(video_input)
if video_b64:
payload["video"] = video_b64
audio_b64 = file_to_base64(audio_input)
if audio_b64:
payload["voice"] = audio_b64
language_code = SORTED_LANGUAGES.get(language_full_name, "en") # Default to 'en'
payload["language"] = language_code
logging.info(f"Audio detected. Using language: {language_full_name} ({language_code})")
logging.info(f"Sending request to {MODERATION_ENDPOINT} with inputs: {list(payload.keys())}")
summary_output = "An error occurred. Please check the logs."
full_response_output = {}
try:
with httpx.Client(timeout=180.0) as client:
response = client.post(MODERATION_ENDPOINT, json=payload)
response.raise_for_status() # Raises HTTPStatusError for 4xx/5xx responses
data = response.json()
full_response_output = data
if not data.get("results"):
summary_output = "API returned an empty result. This might happen if media processing fails (e.g., a video with no frames)."
return summary_output, full_response_output
result = data["results"][0]
status = "π¨ FLAGGED π¨" if result["flagged"] else "β
SAFE β
"
reason = result.get("reason") or "N/A"
transcribed = result.get("transcribed_text") or "N/A"
flagged_categories = [cat for cat, flagged in result.get("categories", {}).items() if flagged]
categories_str = ", ".join(flagged_categories) if flagged_categories else "None"
summary_output = f"""
**Moderation Status:** {status}
---
**Reason:** {reason}
---
**Flagged Categories:** {categories_str}
---
**Transcribed Text (from audio):**
{transcribed}
"""
logging.info("Successfully received and parsed moderation response.")
# --- MODIFIED: Enhanced Error Handling ---
except httpx.HTTPStatusError as e:
# Catches errors returned by the backend API (e.g., 422, 500)
user_message = "The moderation service returned an error."
error_details = ""
try:
# Try to parse the JSON error response from the server
error_json = e.response.json()
detail = error_json.get("detail", "No specific error detail provided.")
error_details = f"**Reason:** {detail}"
full_response_output = {"error": "Backend API Error", "status_code": e.response.status_code, "details": error_json}
except (json.JSONDecodeError, AttributeError):
# Fallback for non-JSON or unexpected error formats
error_details = f"**Raw Server Response:**\n```\n{e.response.text}\n```"
full_response_output = {"error": "Backend API Error", "status_code": e.response.status_code, "details": e.response.text}
summary_output = f"""
**π« Error from Moderation Service (HTTP {e.response.status_code})**
---
{user_message}
{error_details}
"""
logging.error(f"HTTP Status Error: {e.response.status_code} - Response: {e.response.text}")
except httpx.RequestError as e:
# Catches network errors (e.g., server is down, DNS issues)
summary_output = f"""
**π Connection Error**
---
Could not connect to the API server at `{API_BASE_URL}`.
Please ensure the backend server is running and the URL is configured correctly in your `.env` file.
"""
full_response_output = {"error": "Connection Error", "url": API_BASE_URL, "details": str(e)}
logging.error(f"Request Error: Could not connect to {API_BASE_URL}. Details: {e}")
except Exception as e:
# A catch-all for any other unexpected errors in this Gradio script
summary_output = f"""
**π₯ An Unexpected Application Error Occurred**
---
An error happened within the Gradio application itself.
Please check the application logs for more details.
**Error Type:** `{type(e).__name__}`
"""
full_response_output = {"error": "Gradio App Internal Error", "type": type(e).__name__, "details": str(e)}
logging.error(f"Unexpected Error in Gradio App: {e}", exc_info=True)
return summary_output, full_response_output
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
gr.Markdown(
"""
# π€ Multimodal Content Moderation Demo
This demo uses a custom API server to perform advanced content moderation.
You can provide any combination of text, image, video, and audio. The system will analyze all inputs together.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 1. Provide Your Content")
text_input = gr.Textbox(label="Text Input", lines=4, placeholder="Enter any text here...")
image_input = gr.Image(label="Image Input", type="filepath")
video_input = gr.Video(label="Video Input")
audio_input = gr.Audio(label="Voice/Audio Input", type="filepath")
language_input = gr.Dropdown(
label="Audio Language (if providing audio)",
choices=list(SORTED_LANGUAGES.keys()),
value="English",
interactive=True
)
submit_button = gr.Button("Moderate Content", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### 2. See the Results")
result_output = gr.Markdown(label="Moderation Summary")
full_response_output = gr.JSON(label="Full API Response")
submit_button.click(
fn=moderate_content,
inputs=[text_input, image_input, video_input, audio_input, language_input],
outputs=[result_output, full_response_output]
)
gr.Examples(
examples=[
["This is a test of the system with safe text.", None, None, None, "English"],
["I am going to kill the process on my computer.", None, None, None, "English"],
],
inputs=[text_input, image_input, video_input, audio_input, language_input],
outputs=[result_output, full_response_output],
fn=moderate_content
)
if __name__ == "__main__":
logging.info(f"Connecting to API server at: {API_BASE_URL}")
if API_BASE_URL == "http://127.0.0.1:8000":
logging.warning("API_BASE_URL is set to the default local address. Make sure this is correct or set it in your .env file.")
demo.launch(server_name="0.0.0.0", server_port=7860) |