Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,14 +9,14 @@ torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/as
|
|
9 |
git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-vqav2")
|
10 |
git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vqav2")
|
11 |
|
12 |
-
git_processor_large = AutoProcessor.from_pretrained("microsoft/git-large-vqav2")
|
13 |
-
git_model_large = AutoModelForCausalLM.from_pretrained("microsoft/git-large-vqav2")
|
14 |
|
15 |
blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
16 |
blip_model_base = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
17 |
|
18 |
-
blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
|
19 |
-
blip_model_large = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large")
|
20 |
|
21 |
vilt_processor = AutoProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
22 |
vilt_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
@@ -25,8 +25,8 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
25 |
|
26 |
git_model_base.to(device)
|
27 |
blip_model_base.to(device)
|
28 |
-
git_model_large.to(device)
|
29 |
-
blip_model_large.to(device)
|
30 |
vilt_model.to(device)
|
31 |
|
32 |
def generate_answer_git(processor, model, image, question):
|
@@ -72,11 +72,11 @@ def generate_answer_vilt(processor, model, image, question):
|
|
72 |
def generate_answers(image, question):
|
73 |
answer_git_base = generate_answer_git(git_processor_base, git_model_base, image, question)
|
74 |
|
75 |
-
answer_git_large = generate_answer_git(git_processor_large, git_model_large, image, question)
|
76 |
|
77 |
answer_blip_base = generate_answer_blip(blip_processor_base, blip_model_base, image, question)
|
78 |
|
79 |
-
answer_blip_large = generate_answer_blip(blip_processor_large, blip_model_large, image, question)
|
80 |
|
81 |
answer_vilt = generate_answer_vilt(vilt_processor, vilt_model, image, question)
|
82 |
|
|
|
9 |
git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-vqav2")
|
10 |
git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vqav2")
|
11 |
|
12 |
+
# git_processor_large = AutoProcessor.from_pretrained("microsoft/git-large-vqav2")
|
13 |
+
# git_model_large = AutoModelForCausalLM.from_pretrained("microsoft/git-large-vqav2")
|
14 |
|
15 |
blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
16 |
blip_model_base = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
17 |
|
18 |
+
# blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
|
19 |
+
# blip_model_large = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large")
|
20 |
|
21 |
vilt_processor = AutoProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
22 |
vilt_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
|
|
25 |
|
26 |
git_model_base.to(device)
|
27 |
blip_model_base.to(device)
|
28 |
+
#git_model_large.to(device)
|
29 |
+
#blip_model_large.to(device)
|
30 |
vilt_model.to(device)
|
31 |
|
32 |
def generate_answer_git(processor, model, image, question):
|
|
|
72 |
def generate_answers(image, question):
|
73 |
answer_git_base = generate_answer_git(git_processor_base, git_model_base, image, question)
|
74 |
|
75 |
+
# answer_git_large = generate_answer_git(git_processor_large, git_model_large, image, question)
|
76 |
|
77 |
answer_blip_base = generate_answer_blip(blip_processor_base, blip_model_base, image, question)
|
78 |
|
79 |
+
# answer_blip_large = generate_answer_blip(blip_processor_large, blip_model_large, image, question)
|
80 |
|
81 |
answer_vilt = generate_answer_vilt(vilt_processor, vilt_model, image, question)
|
82 |
|