Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -31,33 +31,36 @@ git_model_base.to(device)
|
|
31 |
# vilt_model.to(device)
|
32 |
|
33 |
def generate_answer_git(processor, model, image, question):
|
34 |
-
# prepare image
|
35 |
-
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
36 |
|
37 |
-
# prepare question
|
38 |
-
input_ids = processor(text=question, add_special_tokens=False).input_ids
|
39 |
-
input_ids = [processor.tokenizer.cls_token_id] + input_ids
|
40 |
-
input_ids = torch.tensor(input_ids).unsqueeze(0)
|
41 |
|
42 |
-
generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50, return_dict_in_generate=True, output_scores=True)
|
43 |
-
print('scores:')
|
44 |
-
print(generated_ids.scores)
|
45 |
-
#
|
46 |
-
#
|
47 |
-
#
|
48 |
-
# print(
|
49 |
-
|
50 |
-
|
51 |
-
print(
|
52 |
-
print(
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
print(
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
return 'haha'
|
|
|
31 |
# vilt_model.to(device)
|
32 |
|
33 |
def generate_answer_git(processor, model, image, question):
|
34 |
+
# # prepare image
|
35 |
+
# pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
36 |
|
37 |
+
# # prepare question
|
38 |
+
# input_ids = processor(text=question, add_special_tokens=False).input_ids
|
39 |
+
# input_ids = [processor.tokenizer.cls_token_id] + input_ids
|
40 |
+
# input_ids = torch.tensor(input_ids).unsqueeze(0)
|
41 |
|
42 |
+
# generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50, return_dict_in_generate=True, output_scores=True)
|
43 |
+
# print('scores:')
|
44 |
+
# print(generated_ids.scores)
|
45 |
+
# idx = generated_ids.scores[0].argmax(-1).item()
|
46 |
+
# idx1 = generated_ids.scores[1].argmax(-1).item()
|
47 |
+
# print(idx, idx1)
|
48 |
+
# print(model.config.id2label)
|
49 |
+
# ans = model.config.id2label[idx]
|
50 |
+
# ans1 = model.config.id2label[idx1]
|
51 |
+
# print(ans, ans1)
|
52 |
+
# print('sequences:')
|
53 |
+
# print(generated_ids.sequences)
|
54 |
+
# print(generated_ids)
|
55 |
+
# generated_answer = processor.batch_decode(generated_ids.sequences, skip_special_tokens=True)
|
56 |
+
# print(generated_answer)
|
57 |
+
|
58 |
+
encoding = processor(images=image, text=question, return_tensors="pt")
|
59 |
+
|
60 |
+
with torch.no_grad():
|
61 |
+
outputs = model(**encoding)
|
62 |
+
predicted_class_idx = outputs.logits.argmax(-1).item()
|
63 |
+
return model.config.id2label[predicted_class_idx]
|
64 |
|
65 |
|
66 |
return 'haha'
|