import os import gradio as gr import numpy as np import random from huggingface_hub import AsyncInferenceClient from translatepy import Translator import requests import re import asyncio from PIL import Image translator = Translator() HF_TOKEN = os.environ.get("HF_TOKEN", None) basemodel = "black-forest-labs/FLUX.1-schnell" MAX_SEED = np.iinfo(np.int32).max CSS = """ footer { visibility: hidden; } """ JS = """function () { gradioURL = window.location.href if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }""" def enable_lora(lora_add): if not lora_add: return basemodel else: return lora_add def get_upscale_finegrain(prompt, img_path, upscale_factor): client = Client("finegrain/finegrain-image-enhancer") result = client.predict( input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process" ) return result[1] async def generate_image( prompt:str, model:str, lora_word:str, width:int=768, height:int=1024, scales:float=3.5, steps:int=24, seed:int=-1 ): if seed == -1: seed = random.randint(0, MAX_SEED) seed = int(seed) print(f'prompt:{prompt}') text = str(translator.translate(prompt, 'English')) + "," + lora_word client = AsyncInferenceClient() try: image = await client.text_to_image( prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model, ) except Exception as e: raise gr.Error(f"Error in {e}") return image, seed async def gen( prompt:str, lora_add:str="", lora_word:str="", width:int=768, height:int=1024, scales:float=3.5, steps:int=24, seed:int=-1, progress=gr.Progress(track_tqdm=True), upscale_factor:int=0 ): model = enable_lora(lora_add) print(model) image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed) if upscale_factor != 0: image = get_upscale_finegrain(prompt, image, upscale_factor) return image, seed, image def upscale_image(img_path, upscale_factor, prompt): if upscale_factor == 0: return img_path else: return get_upscale_finegrain(prompt, img_path, upscale_factor) with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo: gr.HTML("

Flux Lab Light

") with gr.Row(): with gr.Column(scale=4): with gr.Row(): img = gr.Image(type="filepath", label='Flux Generated Image', height=600) with gr.Row(): prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6) sendBtn = gr.Button(scale=1, variant='primary') with gr.Accordion("Advanced Options", open=True): with gr.Column(scale=1): width = gr.Slider( label="Width", minimum=512, maximum=1280, step=8, value=768, ) height = gr.Slider( label="Height", minimum=512, maximum=1280, step=8, value=1024, ) scales = gr.Slider( label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5, ) steps = gr.Slider( label="Steps", minimum=1, maximum=100, step=1, value=24, ) seed = gr.Slider( label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1, ) lora_add = gr.Textbox( label="Add Flux LoRA", info="Copy the HF LoRA model name here", lines=1, placeholder="Please use Warm status model", ) lora_word = gr.Textbox( label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="", ) upscale_factor = gr.Radio( label="UpScale Factor", choices=[ 0, 2, 3, 4 ], value=0, scale=2 ) output_res = gr.Image(label="Upscaled Image") gr.on( triggers=[ prompt.submit, sendBtn.click, ], fn=gen, inputs=[ prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor ], outputs=[img, seed, output_res] ) if name == "main": demo.queue(api_open=False).launch(show_api=False, share=False)