File size: 5,830 Bytes
2ddc64d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def train(
        push_to_hub:bool,
        num_epoch: int,
        train_batch_size: int,
        eval_batch_size: int,
):
    import torch
    import numpy as np

    # 1. Dataset
    from datasets import load_dataset
    dataset = load_dataset("Adapting/abstract-keyphrases")

    # 2. Model
    from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
    from lrt.clustering.models import KeyBartAdapter
    tokenizer = AutoTokenizer.from_pretrained("Adapting/KeyBartAdapter")

    '''
    Or you can just use the initial model weights from Huggingface:
    model = AutoModelForSeq2SeqLM.from_pretrained("Adapting/KeyBartAdapter",
                                                  revision='9c3ed39c6ed5c7e141363e892d77cf8f589d5999')
    '''

    model = KeyBartAdapter(256)

    # 3. preprocess dataset
    dataset = dataset.shuffle()

    def preprocess_function(examples):
        inputs = examples['Abstract']
        targets = examples['Keywords']
        model_inputs = tokenizer(inputs, truncation=True)

        # Set up the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, truncation=True)

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    tokenized_dataset = dataset.map(
        preprocess_function,
        batched=True,
        remove_columns=dataset["train"].column_names,
    )

    # 4. evaluation metrics
    def compute_metrics(eval_preds):
        preds = eval_preds.predictions
        labels = eval_preds.label_ids
        if isinstance(preds, tuple):
            preds = preds[0]
        print(preds.shape)
        if len(preds.shape) == 3:
            preds = preds.argmax(axis=-1)

        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        # Replace -100 in the labels as we can't decode them.
        labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
        decoded_preds = [a.strip().split(';') for a in decoded_preds]
        decoded_labels = [a.strip().split(';') for a in decoded_labels]

        precs, recalls, f_scores = [], [], []
        num_match, num_pred, num_gold = [], [], []
        for pred, label in zip(decoded_preds, decoded_labels):
            pred_set = set(pred)
            label_set = set(label)
            match_set = label_set.intersection(pred_set)
            p = float(len(match_set)) / float(len(pred_set)) if len(pred_set) > 0 else 0.0
            r = float(len(match_set)) / float(len(label_set)) if len(label_set) > 0 else 0.0
            f1 = float(2 * (p * r)) / (p + r) if (p + r) > 0 else 0.0
            precs.append(p)
            recalls.append(r)
            f_scores.append(f1)
            num_match.append(len(match_set))
            num_pred.append(len(pred_set))
            num_gold.append(len(label_set))

            # print(f'raw_PRED: {raw_pred}')
            print(f'PRED: num={len(pred_set)} - {pred_set}')
            print(f'GT: num={len(label_set)} - {label_set}')
            print(f'p={p}, r={r}, f1={f1}')
            print('-' * 20)

        result = {
            'precision@M': np.mean(precs) * 100.0,
            'recall@M': np.mean(recalls) * 100.0,
            'fscore@M': np.mean(f_scores) * 100.0,
            'num_match': np.mean(num_match),
            'num_pred': np.mean(num_pred),
            'num_gold': np.mean(num_gold),
        }

        result = {k: round(v, 2) for k, v in result.items()}
        return result

    # 5. train
    from transformers import DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer

    data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)

    model_name = 'KeyBartAdapter'

    args = Seq2SeqTrainingArguments(
        model_name,
        evaluation_strategy="epoch",
        save_strategy="epoch",
        learning_rate=2e-5,
        per_device_train_batch_size=train_batch_size,
        per_device_eval_batch_size=eval_batch_size,
        weight_decay=0.01,
        save_total_limit=3,
        num_train_epochs=num_epoch,
        logging_steps=4,
        load_best_model_at_end=True,
        metric_for_best_model='fscore@M',
        predict_with_generate=True,
        fp16=torch.cuda.is_available(),  # speeds up training on modern GPUs.
        # eval_accumulation_steps=10,
    )

    trainer = Seq2SeqTrainer(
        model,
        args,
        train_dataset=tokenized_dataset["train"],
        eval_dataset=tokenized_dataset["train"],
        data_collator=data_collator,
        tokenizer=tokenizer,
        compute_metrics=compute_metrics
    )

    trainer.train()

    # 6. push
    if push_to_hub:
        commit_msg = f'{model_name}_{num_epoch}'
        tokenizer.push_to_hub(commit_message=commit_msg, repo_id=model_name)
        model.push_to_hub(commit_message=commit_msg, repo_id=model_name)

    return model, tokenizer

if __name__ == '__main__':
    import sys
    from pathlib import Path
    project_root = Path(__file__).parent.parent.parent.absolute()
    sys.path.append(project_root.__str__())


    # code
    import argparse
    parser = argparse.ArgumentParser()

    parser.add_argument("--epoch", help="number of epochs", default=30)
    parser.add_argument("--train_batch_size", help="training batch size", default=16)
    parser.add_argument("--eval_batch_size", help="evaluation batch size", default=16)
    parser.add_argument("--push", help="whether push the model to hub", action='store_true')

    args = parser.parse_args()
    print(args)

    model, tokenizer = train(
        push_to_hub= bool(args.push),
        num_epoch= int(args.epoch),
        train_batch_size= int(args.train_batch_size),
        eval_batch_size= int(args.eval_batch_size)
    )