import gradio as gr import numpy as np import random import os # import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline from peft import PeftModel, LoraConfig import torch device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 LoRA_path = 'new_model' # @spaces.GPU #[uncomment to use ZeroGPU] def infer( model_id, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) if model_id == 'Maria_Lashina_LoRA': adapter_name = 'a cartoonish mouse' unet_sub_dir = os.path.join(LoRA_path, "unet") text_encoder_sub_dir = os.path.join(LoRA_path, "text_encoder") pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device) pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name) if torch_dtype == torch.float16: pipe.unet.half() pipe.text_encoder.half() pipe.to(device) else: pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed examples = [ "The image of a cartoonish mouse eating from a red bowl of yellow triangle chips, her cheeks are full. The mouse is gray with big pink ears, small white eyes and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.", "The image of a cartoonish mouse with red hearts instead of eyes meaning that the mouse is in love with something. The mouse is gray with big pink ears and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.", "The image of a cartoonish mouse with sunglasses and smiling. The mouse is gray with big pink ears and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template") MODEL_LIST = [ "CompVis/stable-diffusion-v1-4", "stable-diffusion-v1-5/stable-diffusion-v1-5", "Maria_Lashina_LoRA" ] with gr.Row(): model_id = gr.Dropdown( label="Model", choices=MODEL_LIST ) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=False) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.0, # Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=20, # Replace with defaults that work for your model ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ model_id, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()