File size: 13,003 Bytes
8bf58fb 0ddb8ec dd0bd1a 0ddb8ec dd0bd1a 907b68f 5011a98 b03791b 5011a98 0ddb8ec 907b68f 0ddb8ec 762e024 0ddb8ec deb59b3 0ddb8ec dd0bd1a 0ddb8ec deb59b3 762e024 0ddb8ec 762e024 0ddb8ec 8bf58fb 0ddb8ec 762e024 0ddb8ec 044b65e 762e024 0ddb8ec 044b65e deb59b3 0ddb8ec deb59b3 762e024 044b65e 762e024 044b65e 762e024 044b65e 762e024 044b65e 1e07071 044b65e 1e07071 044b65e 1e07071 044b65e 8bf58fb 044b65e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import gradio as gr
from langchain_community.document_loaders import CSVLoader # Changed import
from langchain_community.vectorstores import FAISS # Changed import
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFaceLLM # Adjusted for correct instantiation
import warnings
from huggingface_hub import login
import os
from transformers import pipeline
# Initialize the LLM using pipeline
llm = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct") # Adjusted initialization
# Load CSV file
loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column='prompt')
data = loader.load()
# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
warnings.filterwarnings("ignore", category=FutureWarning, message="`resume_download` is deprecated")
# Embedding model
model_name = "BAAI/bge-m3"
instructor_embeddings = HuggingFaceLLM(model_name=model_name) # Adjusted for correct instantiation
# Create FAISS vector store from documents
vectordb = FAISS.from_documents(documents=data, embedding=instructor_embeddings)
retriever = vectordb.as_retriever()
# Define the prompt template
prompt_template = """Given the following context and a question, generate an answer based on the context only.
In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.
CONTEXT: {context}
QUESTION: {question}"""
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
# Initialize the RetrievalQA chain
chain = RetrievalQA.from_chain_type(llm=llm, # Adjusted initialization
chain_type="stuff",
retriever=retriever,
input_key="query",
return_source_documents=True,
chain_type_kwargs={"prompt": PROMPT})
# Define the chat response function
def chatresponse(message, history):
output = chain(message)
return output['result']
# Launch the Gradio chat interface
gr.ChatInterface(chatresponse).launch()
# import gradio as gr
# # from langchain.llms import GooglePalm
# from langchain_google_genai import GoogleGenerativeAI
# from langchain.document_loaders.csv_loader import CSVLoader
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain.vectorstores import FAISS
# from langchain.prompts import PromptTemplate
# from langchain.chains import RetrievalQA
# import warnings
# from huggingface_hub import login
# import os
# from transformers import pipeline
# llm = pipeline("feature-extraction", model="mixedbread-ai/mxbai-embed-large-v1")
# # from transformers import AutoModel
# # llm = AutoModel.from_pretrained("Alibaba-NLP/gte-large-en-v1.5", trust_remote_code=True)
# # LLAMA
# # from transformers import AutoModelForCausalLM, AutoTokenizer
# # from transformers import pipeline
# # hf_token = os.environ['llama_token']
# # login(token=hf_token)
# # llm = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct")
# # llm = pipeline("text-generation", model = "meta-llama/Meta-Llama-3-70B-Instruct")
# # MISTRAL
# # llm = pipeline("text-generation", model="mistralai/Mixtral-8x22B-Instruct-v0.1")
# # TO USE GOOGLE MODELS
# # api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
# # llm = GoogleGenerativeAI(model="models/text-bison-001", google_api_key=api_key)
# # llm = GooglePalm(google_api_key = api_key, temperature=0.7)
# # LOADING CSV FILE
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()
# # SUPPRESSING WARNINGS
# warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
# warnings.filterwarnings("ignore", category=FutureWarning, message="`resume_download` is deprecated")
# # EMBEDDING MODEL
# model_name = "BAAI/bge-m3"
# instructor_embeddings = HuggingFaceEmbeddings(model_name=model_name)
# # Create FAISS vector store from documents
# vectordb = FAISS.from_documents(documents=data, embedding=instructor_embeddings)
# retriever = vectordb.as_retriever()
# prompt_template = """Given the following context and a question, generate an answer based on the context only.
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.
# CONTEXT: {context}
# QUESTION: {question}"""
# PROMPT = PromptTemplate(
# template = prompt_template, input_variables = ["context", "question"]
# )
# chain = RetrievalQA.from_chain_type(llm = llm,
# chain_type="stuff",
# retriever=retriever,
# input_key="query",
# return_source_documents=True,
# chain_type_kwargs = {"prompt": PROMPT})
# def chatresponse(message, history):
# output = chain(message)
# return output['result']
# gr.ChatInterface(chatresponse).launch()
# import gradio as gr
# # from langchain.llms import GooglePalm
# # from langchain.document_loaders.csv_loader import CSVLoader
# # from langchain_huggingface import HuggingFaceEmbeddings
# # from langchain.vectorstores import FAISS
# from langchain_community.llms import GooglePalm
# from langchain_community.document_loaders import CSVLoader
# from langchain_community.vectorstores import FAISS
# from langchain_huggingface import HuggingFaceEmbeddings
# api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
# llm = GooglePalm(google_api_key = api_key, temperature=0.7)
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()
# instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
# vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)
# retriever = vectordb.as_retriever()
# from langchain.prompts import PromptTemplate
# prompt_template = """Given the following context and a question, generate an answer based on the context only.
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.
# CONTEXT: {context}
# QUESTION: {question}"""
# PROMPT = PromptTemplate(
# template = prompt_template, input_variables = ["context", "question"]
# )
# from langchain.chains import RetrievalQA
# chain = RetrievalQA.from_chain_type(llm = llm,
# chain_type="stuff",
# retriever=retriever,
# input_key="query",
# return_source_documents=True,
# chain_type_kwargs = {"prompt": PROMPT})
# def chatresponse(message, history):
# output = chain(message)
# return output['result']
# gr.ChatInterface(chatresponse).launch()
# import gradio as gr
# from langchain.llms import GooglePalm
# api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
# llm = GooglePalm(google_api_key = api_key, temperature=0.7)
# from langchain.document_loaders.csv_loader import CSVLoader
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain.vectorstores import FAISS
# # instructor_embeddings = HuggingFaceEmbeddings(model_name = "Alibaba-NLP/gte-Qwen2-7B-instruct") # best model <-- but too big
# instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
# # instructor_embeddings = HuggingFaceEmbeddings()
# vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)
# # e = embeddings_model.embed_query("What is your refund policy")
# retriever = vectordb.as_retriever()
# from langchain.prompts import PromptTemplate
# prompt_template = """Given the following context and a question, generate an answer based on the context only.
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.
# CONTEXT: {context}
# QUESTION: {question}"""
# PROMPT = PromptTemplate(
# template = prompt_template, input_variables = ["context", "question"]
# )
# from langchain.chains import RetrievalQA
# chain = RetrievalQA.from_chain_type(llm = llm,
# chain_type="stuff",
# retriever=retriever,
# input_key="query",
# return_source_documents=True,
# chain_type_kwargs = {"prompt": PROMPT})
# # Load your LLM model and necessary components
# # Assume `chain` is a function defined in your notebook that takes a query and returns the output as shown
# # For this example, we'll assume the model and chain function are already available
# def chatbot(query):
# response = chain(query)
# # Extract the 'result' part of the response
# result = response.get('result', 'Sorry, I could not find an answer.')
# return result
# # Define the Gradio interface
# iface = gr.Interface(
# fn=chatbot, # Function to call
# inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your question here..."), # Input type
# outputs="text", # Output type
# title="Hugging Face LLM Chatbot",
# description="Ask any question related to the documents and get an answer from the LLM model.",
# )
# # Launch the interface
# iface.launch()
# # Save this file as app.py and push it to your Hugging Face Space repository
# # import gradio as gr
# # def greet(name, intensity):
# # return "Hello, " + name + "!" * int(intensity)
# # demo = gr.Interface(
# # fn=greet,
# # inputs=["text", "slider"],
# # outputs=["text"],
# # )
# # demo.launch()
# # import gradio as gr
# # from huggingface_hub import InferenceClient
# # """
# # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# # """
# # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# # def respond(
# # message,
# # history: list[tuple[str, str]],
# # system_message,
# # max_tokens,
# # temperature,
# # top_p,
# # ):
# # messages = [{"role": "system", "content": system_message}]
# # for val in history:
# # if val[0]:
# # messages.append({"role": "user", "content": val[0]})
# # if val[1]:
# # messages.append({"role": "assistant", "content": val[1]})
# # messages.append({"role": "user", "content": message})
# # response = ""
# # for message in client.chat_completion(
# # messages,
# # max_tokens=max_tokens,
# # stream=True,
# # temperature=temperature,
# # top_p=top_p,
# # ):
# # token = message.choices[0].delta.content
# # response += token
# # yield response
# # """
# # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# # """
# # demo = gr.ChatInterface(
# # respond,
# # additional_inputs=[
# # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# # gr.Slider(
# # minimum=0.1,
# # maximum=1.0,
# # value=0.95,
# # step=0.05,
# # label="Top-p (nucleus sampling)",
# # ),
# # ],
# # )
# # if __name__ == "__main__":
# # demo.launch()
|