Update app.py
Browse files
app.py
CHANGED
@@ -5,10 +5,8 @@ import numpy as np
|
|
5 |
import requests
|
6 |
|
7 |
from langchain_groq import ChatGroq
|
8 |
-
from langchain.agents import initialize_agent
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
from langchain.chains import LLMChain
|
11 |
-
from langchain.tools import StructuredTool
|
12 |
|
13 |
|
14 |
model_path = "unet_model.h5"
|
@@ -43,31 +41,11 @@ def rishigpt_handler(image_input, groq_api_key):
|
|
43 |
|
44 |
mask = classify_image(image_input)
|
45 |
|
46 |
-
# The LLM tool just reports a dummy text here for now
|
47 |
-
def segment_brain_tool():
|
48 |
-
return "A brain tumor mask was generated."
|
49 |
-
|
50 |
-
tool = StructuredTool.from_function(
|
51 |
-
segment_brain_tool,
|
52 |
-
name="segment_brain",
|
53 |
-
description="Segment brain MRI for tumor detection."
|
54 |
-
)
|
55 |
-
|
56 |
llm = ChatGroq(
|
57 |
model="meta-llama/llama-4-scout-17b-16e-instruct",
|
58 |
temperature=0.3
|
59 |
)
|
60 |
|
61 |
-
agent = initialize_agent(
|
62 |
-
tools=[tool],
|
63 |
-
llm=llm,
|
64 |
-
agent="zero-shot-react-description",
|
65 |
-
verbose=True
|
66 |
-
)
|
67 |
-
|
68 |
-
user_query = "I uploaded a brain MRI. What does the segmentation say?"
|
69 |
-
classification = agent.run(user_query)
|
70 |
-
|
71 |
prompt = PromptTemplate(
|
72 |
input_variables=["result"],
|
73 |
template="You are a medical imaging expert. Based on the result: {result}, explain what this means for diagnosis."
|
@@ -78,6 +56,7 @@ def rishigpt_handler(image_input, groq_api_key):
|
|
78 |
prompt=prompt
|
79 |
)
|
80 |
|
|
|
81 |
description = llm_chain.run({"result": classification})
|
82 |
|
83 |
return mask, description
|
|
|
5 |
import requests
|
6 |
|
7 |
from langchain_groq import ChatGroq
|
|
|
8 |
from langchain.prompts import PromptTemplate
|
9 |
from langchain.chains import LLMChain
|
|
|
10 |
|
11 |
|
12 |
model_path = "unet_model.h5"
|
|
|
41 |
|
42 |
mask = classify_image(image_input)
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
llm = ChatGroq(
|
45 |
model="meta-llama/llama-4-scout-17b-16e-instruct",
|
46 |
temperature=0.3
|
47 |
)
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
prompt = PromptTemplate(
|
50 |
input_variables=["result"],
|
51 |
template="You are a medical imaging expert. Based on the result: {result}, explain what this means for diagnosis."
|
|
|
56 |
prompt=prompt
|
57 |
)
|
58 |
|
59 |
+
classification = "The brain tumor mask has been generated and segmentation is complete."
|
60 |
description = llm_chain.run({"result": classification})
|
61 |
|
62 |
return mask, description
|