Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ from langchain.tools import StructuredTool
|
|
15 |
IMG_HEIGHT = 256
|
16 |
IMG_WIDTH = 256
|
17 |
|
18 |
-
|
19 |
model_path = "unet_model.h5"
|
20 |
if not os.path.exists(model_path):
|
21 |
hf_url = "https://huggingface.co/rishirajbal/UNET_plus_plus_Brain_segmentation/resolve/main/unet_model.h5"
|
@@ -30,7 +30,7 @@ print("Loading model...")
|
|
30 |
model = tf.keras.models.load_model(model_path, compile=False)
|
31 |
|
32 |
|
33 |
-
|
34 |
def classify_image_and_stats(image_input):
|
35 |
img = tf.image.resize(image_input, [IMG_HEIGHT, IMG_WIDTH])
|
36 |
img_norm = img / 255.0
|
@@ -46,7 +46,7 @@ def classify_image_and_stats(image_input):
|
|
46 |
total_area = IMG_HEIGHT * IMG_WIDTH
|
47 |
tumor_ratio = tumor_area / total_area
|
48 |
|
49 |
-
tumor_label = "Tumor Detected" if tumor_ratio > 0.
|
50 |
|
51 |
overlay = np.array(img)
|
52 |
red_mask = np.zeros_like(overlay)
|
@@ -64,7 +64,7 @@ def classify_image_and_stats(image_input):
|
|
64 |
return overlay_img, stats
|
65 |
|
66 |
|
67 |
-
|
68 |
def rishigpt_handler(image_input, groq_api_key):
|
69 |
os.environ["GROQ_API_KEY"] = groq_api_key
|
70 |
|
@@ -110,14 +110,14 @@ def rishigpt_handler(image_input, groq_api_key):
|
|
110 |
chain = prompt | llm
|
111 |
final_text = chain.invoke({"result": classification}).content.strip()
|
112 |
|
113 |
-
|
114 |
displayed_text = ""
|
115 |
for char in final_text:
|
116 |
displayed_text += char
|
117 |
time.sleep(0.015)
|
118 |
yield overlay_img, displayed_text
|
119 |
|
120 |
-
|
121 |
inputs = [
|
122 |
gr.Image(type="numpy", label="Upload Brain MRI Slice"),
|
123 |
gr.Textbox(type="password", label="Groq API Key")
|
|
|
15 |
IMG_HEIGHT = 256
|
16 |
IMG_WIDTH = 256
|
17 |
|
18 |
+
|
19 |
model_path = "unet_model.h5"
|
20 |
if not os.path.exists(model_path):
|
21 |
hf_url = "https://huggingface.co/rishirajbal/UNET_plus_plus_Brain_segmentation/resolve/main/unet_model.h5"
|
|
|
30 |
model = tf.keras.models.load_model(model_path, compile=False)
|
31 |
|
32 |
|
33 |
+
|
34 |
def classify_image_and_stats(image_input):
|
35 |
img = tf.image.resize(image_input, [IMG_HEIGHT, IMG_WIDTH])
|
36 |
img_norm = img / 255.0
|
|
|
46 |
total_area = IMG_HEIGHT * IMG_WIDTH
|
47 |
tumor_ratio = tumor_area / total_area
|
48 |
|
49 |
+
tumor_label = "Tumor Detected" if tumor_ratio > 0.00385 else "No Tumor Detected"
|
50 |
|
51 |
overlay = np.array(img)
|
52 |
red_mask = np.zeros_like(overlay)
|
|
|
64 |
return overlay_img, stats
|
65 |
|
66 |
|
67 |
+
|
68 |
def rishigpt_handler(image_input, groq_api_key):
|
69 |
os.environ["GROQ_API_KEY"] = groq_api_key
|
70 |
|
|
|
110 |
chain = prompt | llm
|
111 |
final_text = chain.invoke({"result": classification}).content.strip()
|
112 |
|
113 |
+
|
114 |
displayed_text = ""
|
115 |
for char in final_text:
|
116 |
displayed_text += char
|
117 |
time.sleep(0.015)
|
118 |
yield overlay_img, displayed_text
|
119 |
|
120 |
+
|
121 |
inputs = [
|
122 |
gr.Image(type="numpy", label="Upload Brain MRI Slice"),
|
123 |
gr.Textbox(type="password", label="Groq API Key")
|