rishabh5752's picture
Update app.py
2cea944
raw
history blame
963 Bytes
import gradio as gr
import numpy as np
from tensorflow.keras.models import load_model
# Load the trained model
model = load_model('skin_model.h5')
# Define a function to make predictions
def predict(image):
# Preprocess the image
image = image / 255.0
image = np.expand_dims(image, axis=0)
# Make a prediction using the model
prediction = model.predict(image)
# Get the predicted class label
if prediction[0][0] < 0.5:
label = 'Benign'
else:
label = 'Malignant'
return label
examples = [["benign.jpg"], ["malignant.jpg"]]
# Define a Gradio interface for user interaction
image_input = gr.inputs.Image(shape=(150, 150))
label_output = gr.outputs.Label()
iface = gr.Interface(
fn=predict,
inputs=image_input,
outputs=label_output,
examples=examples,
title="Skin Cancer Classification",
description="Predicts whether a skin image is cancerous or not."
)
iface.launch()