rishabh5752 commited on
Commit
da5f7d1
·
verified ·
1 Parent(s): dbbd44e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +190 -0
app.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ api_token = os.getenv("HF_TOKEN")
4
+
5
+ from langchain_community.vectorstores import FAISS
6
+ from langchain_community.document_loaders import PyPDFLoader
7
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
8
+ from langchain_community.vectorstores import Chroma
9
+ from langchain.chains import ConversationalRetrievalChain
10
+ from langchain_community.embeddings import HuggingFaceEmbeddings
11
+ from langchain_community.llms import HuggingFacePipeline
12
+ from langchain.chains import ConversationChain
13
+ from langchain.memory import ConversationBufferMemory
14
+ from langchain_community.llms import HuggingFaceEndpoint
15
+ import torch
16
+
17
+ list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
18
+ list_llm_simple = [os.path.basename(llm) for llm in list_llm]
19
+
20
+ def load_doc(list_file_path):
21
+ loaders = [PyPDFLoader(x) for x in list_file_path]
22
+ pages = []
23
+ for loader in loaders:
24
+ pages.extend(loader.load())
25
+ text_splitter = RecursiveCharacterTextSplitter(
26
+ chunk_size = 1024,
27
+ chunk_overlap = 64
28
+ )
29
+ doc_splits = text_splitter.split_documents(pages)
30
+ return doc_splits
31
+
32
+ def create_db(splits):
33
+ embeddings = HuggingFaceEmbeddings()
34
+ vectordb = FAISS.from_documents(splits, embeddings)
35
+ return vectordb
36
+
37
+ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
38
+ if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
39
+ llm = HuggingFaceEndpoint(
40
+ repo_id=llm_model,
41
+ huggingfacehub_api_token = api_token,
42
+ temperature = temperature,
43
+ max_new_tokens = max_tokens,
44
+ top_k = top_k,
45
+ )
46
+ else:
47
+ llm = HuggingFaceEndpoint(
48
+ huggingfacehub_api_token = api_token,
49
+ repo_id=llm_model,
50
+ temperature = temperature,
51
+ max_new_tokens = max_tokens,
52
+ top_k = top_k,
53
+ )
54
+
55
+ memory = ConversationBufferMemory(
56
+ memory_key="chat_history",
57
+ output_key='answer',
58
+ return_messages=True
59
+ )
60
+
61
+ retriever=vector_db.as_retriever()
62
+ qa_chain = ConversationalRetrievalChain.from_llm(
63
+ llm,
64
+ retriever=retriever,
65
+ chain_type="stuff",
66
+ memory=memory,
67
+ return_source_documents=True,
68
+ verbose=False,
69
+ )
70
+ return qa_chain
71
+
72
+ def initialize_database(list_file_obj, progress=gr.Progress()):
73
+ list_file_path = [x.name for x in list_file_obj if x is not None]
74
+ doc_splits = load_doc(list_file_path)
75
+ vector_db = create_db(doc_splits)
76
+ return vector_db, "Database created!"
77
+
78
+ def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
79
+ llm_name = list_llm[llm_option]
80
+ qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
81
+ return qa_chain, "QA chain initialized. Chatbot is ready!"
82
+
83
+ def format_chat_history(message, chat_history):
84
+ formatted_chat_history = []
85
+ for user_message, bot_message in chat_history:
86
+ formatted_chat_history.append(f"User: {user_message}")
87
+ formatted_chat_history.append(f"Assistant: {bot_message}")
88
+ return formatted_chat_history
89
+
90
+ def conversation(qa_chain, message, history):
91
+ formatted_chat_history = format_chat_history(message, history)
92
+ response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
93
+ response_answer = response["answer"]
94
+ if response_answer.find("Helpful Answer:") != -1:
95
+ response_answer = response_answer.split("Helpful Answer:")[-1]
96
+ response_sources = response["source_documents"]
97
+ response_source1 = response_sources[0].page_content.strip()
98
+ response_source2 = response_sources[1].page_content.strip()
99
+ response_source3 = response_sources[2].page_content.strip()
100
+ response_source1_page = response_sources[0].metadata["page"] + 1
101
+ response_source2_page = response_sources[1].metadata["page"] + 1
102
+ response_source3_page = response_sources[2].metadata["page"] + 1
103
+ new_history = history + [(message, response_answer)]
104
+ return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
105
+
106
+ def upload_file(file_obj):
107
+ list_file_path = []
108
+ for idx, file in enumerate(file_obj):
109
+ file_path = file_obj.name
110
+ list_file_path.append(file_path)
111
+ return list_file_path
112
+
113
+ def demo():
114
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo:
115
+ vector_db = gr.State()
116
+ qa_chain = gr.State()
117
+ gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
118
+ gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. The app is hosted on Hugging Face Hub for the sole purpose of demonstration. \
119
+ <b>Please do not upload confidential documents.</b>
120
+ """)
121
+ with gr.Row():
122
+ with gr.Column(scale = 86):
123
+ gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
124
+ with gr.Row():
125
+ document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
126
+ with gr.Row():
127
+ db_btn = gr.Button("Create vector database")
128
+ with gr.Row():
129
+ db_progress = gr.Textbox(value="Not initialized", show_label=False)
130
+ gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
131
+ with gr.Row():
132
+ llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index")
133
+ with gr.Row():
134
+ with gr.Accordion("LLM input parameters", open=False):
135
+ with gr.Row():
136
+ slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", interactive=True)
137
+ with gr.Row():
138
+ slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", interactive=True)
139
+ with gr.Row():
140
+ slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", interactive=True)
141
+ with gr.Row():
142
+ qachain_btn = gr.Button("Initialize Question Answering Chatbot")
143
+ with gr.Row():
144
+ llm_progress = gr.Textbox(value="Not initialized", show_label=False)
145
+
146
+ with gr.Column(scale = 200):
147
+ gr.Markdown("<b>Step 2 - Chat with your Document</b>")
148
+ chatbot = gr.Chatbot(height=505)
149
+ with gr.Accordion("Relevent context from the source document", open=False):
150
+ with gr.Row():
151
+ doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
152
+ source1_page = gr.Number(label="Page", scale=1)
153
+ with gr.Row():
154
+ doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
155
+ source2_page = gr.Number(label="Page", scale=1)
156
+ with gr.Row():
157
+ doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
158
+ source3_page = gr.Number(label="Page", scale=1)
159
+ with gr.Row():
160
+ msg = gr.Textbox(placeholder="Ask a question", container=True)
161
+ with gr.Row():
162
+ submit_btn = gr.Button("Submit")
163
+ clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
164
+
165
+ db_btn.click(initialize_database, \
166
+ inputs=[document], \
167
+ outputs=[vector_db, db_progress])
168
+ qachain_btn.click(initialize_LLM, \
169
+ inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
170
+ outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
171
+ inputs=None, \
172
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
173
+ queue=False)
174
+
175
+ msg.submit(conversation, \
176
+ inputs=[qa_chain, msg, chatbot], \
177
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
178
+ queue=False)
179
+ submit_btn.click(conversation, \
180
+ inputs=[qa_chain, msg, chatbot], \
181
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
182
+ queue=False)
183
+ clear_btn.click(lambda:[None,"",0,"",0,"",0], \
184
+ inputs=None, \
185
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
186
+ queue=False)
187
+ demo.queue().launch(debug=True)
188
+
189
+ if __name__ == "__main__":
190
+ demo()