Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
import time
|
4 |
+
import gradio as gr
|
5 |
+
from langchain import OpenAI
|
6 |
+
from langchain.chains import RetrievalQAWithSourcesChain
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.document_loaders import UnstructuredURLLoader
|
9 |
+
from langchain.embeddings import OpenAIEmbeddings
|
10 |
+
from langchain.vectorstores import FAISS
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
|
13 |
+
load_dotenv() # take environment variables from .env (especially openai api key)
|
14 |
+
|
15 |
+
# Define the main function to process URLs and handle queries
|
16 |
+
def process_and_query(url1, url2, url3, query):
|
17 |
+
urls = [url1, url2, url3]
|
18 |
+
file_path = "faiss_store_openai.pkl"
|
19 |
+
llm = OpenAI(temperature=0.9, max_tokens=500)
|
20 |
+
|
21 |
+
# Load data
|
22 |
+
loader = UnstructuredURLLoader(urls=urls)
|
23 |
+
data = loader.load()
|
24 |
+
|
25 |
+
# Split data
|
26 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
27 |
+
separators=['\n\n', '\n', '.', ','],
|
28 |
+
chunk_size=1000
|
29 |
+
)
|
30 |
+
docs = text_splitter.split_documents(data)
|
31 |
+
|
32 |
+
# Create embeddings and save it to FAISS index
|
33 |
+
embeddings = OpenAIEmbeddings()
|
34 |
+
vectorstore_openai = FAISS.from_documents(docs, embeddings)
|
35 |
+
|
36 |
+
# Save the FAISS index to a pickle file
|
37 |
+
with open(file_path, "wb") as f:
|
38 |
+
pickle.dump(vectorstore_openai, f)
|
39 |
+
|
40 |
+
# Process the query
|
41 |
+
if os.path.exists(file_path):
|
42 |
+
with open(file_path, "rb") as f:
|
43 |
+
vectorstore = pickle.load(f)
|
44 |
+
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever())
|
45 |
+
result = chain({"question": query}, return_only_outputs=True)
|
46 |
+
answer = result["answer"]
|
47 |
+
|
48 |
+
# Extract and format sources
|
49 |
+
sources = result.get("sources", "")
|
50 |
+
sources_list = sources.split("\n") if sources else []
|
51 |
+
return answer, sources_list
|
52 |
+
|
53 |
+
# Define the Gradio interface
|
54 |
+
url1_input = gr.inputs.Textbox(label="URL 1")
|
55 |
+
url2_input = gr.inputs.Textbox(label="URL 2")
|
56 |
+
url3_input = gr.inputs.Textbox(label="URL 3")
|
57 |
+
query_input = gr.inputs.Textbox(label="Question")
|
58 |
+
|
59 |
+
output_text = gr.outputs.Textbox(label="Answer")
|
60 |
+
output_sources = gr.outputs.Textbox(label="Sources")
|
61 |
+
|
62 |
+
interface = gr.Interface(
|
63 |
+
fn=process_and_query,
|
64 |
+
inputs=[url1_input, url2_input, url3_input, query_input],
|
65 |
+
outputs=[output_text, output_sources],
|
66 |
+
title="RockyBot: News Research Tool 📈",
|
67 |
+
description="Enter up to three news article URLs and ask a question. The bot will process the articles and provide an answer along with the sources."
|
68 |
+
)
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
interface.launch()
|