Spaces:
Runtime error
Runtime error
Updated app, added video generation and model files
Browse files- app.py +205 -1
- generate_videos.py +259 -0
- model/sg2_model.py +780 -0
app.py
CHANGED
|
@@ -1,3 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
from e4e.models.psp import pSp
|
| 11 |
+
from util import *
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
|
| 14 |
+
import os
|
| 15 |
+
import sys
|
| 16 |
+
import tempfile
|
| 17 |
+
import shutil
|
| 18 |
+
from argparse import Namespace
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
|
| 21 |
+
import dlib
|
| 22 |
+
import numpy as np
|
| 23 |
+
import torchvision.transforms as transforms
|
| 24 |
+
from torchvision import utils
|
| 25 |
+
from PIL import Image
|
| 26 |
+
|
| 27 |
+
from model.sg2_model import Generator
|
| 28 |
+
from generate_videos import generate_frames, video_from_interpolations, vid_to_gif
|
| 29 |
+
|
| 30 |
+
model_dir = "models"
|
| 31 |
+
os.makedirs(model_dir, exist_ok=True)
|
| 32 |
+
|
| 33 |
+
models_and_paths = {"akhaliq/JoJoGAN_e4e_ffhq_encode": "e4e_ffhq_encode.pt",
|
| 34 |
+
"akhaliq/jojogan_dlib": "shape_predictor_68_face_landmarks.dat",
|
| 35 |
+
"akhaliq/jojogan-stylegan2-ffhq-config-f": f"{model_dir}/base.pt"}
|
| 36 |
+
|
| 37 |
+
def get_models():
|
| 38 |
+
for repo_id, file_path in models_and_paths:
|
| 39 |
+
hf_hub_download(repo_id=repo_id, filename=file_path)
|
| 40 |
+
|
| 41 |
+
model_list = ['base'] + [Path(model_ckpt).stem for model_ckpt in os.listdir(model_dir) if not 'base' in model_ckpt]
|
| 42 |
+
|
| 43 |
+
return model_list
|
| 44 |
+
|
| 45 |
+
model_list = get_models()
|
| 46 |
+
|
| 47 |
+
class ImageEditor(object):
|
| 48 |
+
def __init__(self):
|
| 49 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 50 |
+
|
| 51 |
+
latent_size = 512
|
| 52 |
+
n_mlp = 8
|
| 53 |
+
channel_mult = 2
|
| 54 |
+
model_size = 1024
|
| 55 |
+
|
| 56 |
+
self.generators = {}
|
| 57 |
+
|
| 58 |
+
for model in model_list:
|
| 59 |
+
g_ema = Generator(
|
| 60 |
+
model_size, latent_size, n_mlp, channel_multiplier=channel_mult
|
| 61 |
+
).to(self.device)
|
| 62 |
+
|
| 63 |
+
checkpoint = torch.load(f"models/{model}.pt")
|
| 64 |
+
|
| 65 |
+
g_ema.load_state_dict(checkpoint['g_ema'])
|
| 66 |
+
|
| 67 |
+
self.generators[model] = g_ema
|
| 68 |
+
|
| 69 |
+
self.experiment_args = {"model_path": "e4e_ffhq_encode.pt"}
|
| 70 |
+
self.experiment_args["transform"] = transforms.Compose(
|
| 71 |
+
[
|
| 72 |
+
transforms.Resize((256, 256)),
|
| 73 |
+
transforms.ToTensor(),
|
| 74 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
|
| 75 |
+
]
|
| 76 |
+
)
|
| 77 |
+
self.resize_dims = (256, 256)
|
| 78 |
+
|
| 79 |
+
model_path = self.experiment_args["model_path"]
|
| 80 |
+
|
| 81 |
+
ckpt = torch.load(model_path, map_location="cpu")
|
| 82 |
+
opts = ckpt["opts"]
|
| 83 |
+
|
| 84 |
+
opts["checkpoint_path"] = model_path
|
| 85 |
+
opts = Namespace(**opts)
|
| 86 |
+
|
| 87 |
+
self.e4e_net = pSp(opts)
|
| 88 |
+
self.e4e_net.eval()
|
| 89 |
+
self.e4e_net.cuda()
|
| 90 |
+
|
| 91 |
+
self.shape_predictor = dlib.shape_predictor(
|
| 92 |
+
models_and_paths["akhaliq/jojogan_dlib"]
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
print("setup complete")
|
| 96 |
+
|
| 97 |
+
def get_style_list(self):
|
| 98 |
+
style_list = ['all', 'list - enter below']
|
| 99 |
+
|
| 100 |
+
for key in self.generators:
|
| 101 |
+
style_list.append(key)
|
| 102 |
+
|
| 103 |
+
return style_list
|
| 104 |
+
|
| 105 |
+
def predict(
|
| 106 |
+
self,
|
| 107 |
+
input, # Input image path
|
| 108 |
+
output_style, # Which output style do you want to use?
|
| 109 |
+
style_list, # Comma seperated list of models to use. Only accepts models from the output_style list
|
| 110 |
+
generate_video, # Generate a video instead of an output image
|
| 111 |
+
with_editing, # Apply latent space editing to the generated video
|
| 112 |
+
video_format # Choose gif to display in browser, mp4 for higher-quality downloadable video
|
| 113 |
+
):
|
| 114 |
+
|
| 115 |
+
if output_style == 'all':
|
| 116 |
+
styles = model_list
|
| 117 |
+
elif output_style == 'list - enter below':
|
| 118 |
+
styles = style_list.split(",")
|
| 119 |
+
for style in styles:
|
| 120 |
+
if style not in model_list:
|
| 121 |
+
raise ValueError(f"Encountered style '{style}' in the style_list which is not an available option.")
|
| 122 |
+
else:
|
| 123 |
+
styles = [output_style]
|
| 124 |
+
|
| 125 |
+
# @title Align image
|
| 126 |
+
input_image = self.run_alignment(str(input))
|
| 127 |
+
|
| 128 |
+
input_image = input_image.resize(self.resize_dims)
|
| 129 |
+
|
| 130 |
+
img_transforms = self.experiment_args["transform"]
|
| 131 |
+
transformed_image = img_transforms(input_image)
|
| 132 |
+
|
| 133 |
+
with torch.no_grad():
|
| 134 |
+
images, latents = self.run_on_batch(transformed_image.unsqueeze(0))
|
| 135 |
+
result_image, latent = images[0], latents[0]
|
| 136 |
+
|
| 137 |
+
inverted_latent = latent.unsqueeze(0).unsqueeze(1)
|
| 138 |
+
out_dir = Path(tempfile.mkdtemp())
|
| 139 |
+
out_path = out_dir / "out.jpg"
|
| 140 |
+
|
| 141 |
+
generators = [self.generators[style] for style in styles]
|
| 142 |
+
|
| 143 |
+
if not generate_video:
|
| 144 |
+
with torch.no_grad():
|
| 145 |
+
img_list = []
|
| 146 |
+
for g_ema in generators:
|
| 147 |
+
img, _ = g_ema(inverted_latent, input_is_latent=True, truncation=1, randomize_noise=False)
|
| 148 |
+
img_list.append(img)
|
| 149 |
+
|
| 150 |
+
out_img = torch.cat(img_list, axis=0)
|
| 151 |
+
utils.save_image(out_img, out_path, nrow=int(np.sqrt(out_img.size(0))), normalize=True, scale_each=True, range=(-1, 1))
|
| 152 |
+
|
| 153 |
+
return Path(out_path)
|
| 154 |
+
|
| 155 |
+
return self.generate_vid(generators, inverted_latent, out_dir, video_format, with_editing)
|
| 156 |
+
|
| 157 |
+
def generate_vid(self, generators, latent, out_dir, video_format, with_editing):
|
| 158 |
+
np_latent = latent.squeeze(0).cpu().detach().numpy()
|
| 159 |
+
args = {
|
| 160 |
+
'fps': 24,
|
| 161 |
+
'target_latents': None,
|
| 162 |
+
'edit_directions': None,
|
| 163 |
+
'unedited_frames': 0 if with_editing else 40 * (len(generators) - 1)
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
args = Namespace(**args)
|
| 167 |
+
with tempfile.TemporaryDirectory() as dirpath:
|
| 168 |
+
|
| 169 |
+
generate_frames(args, np_latent, generators, dirpath)
|
| 170 |
+
video_from_interpolations(args.fps, dirpath)
|
| 171 |
+
|
| 172 |
+
gen_path = Path(dirpath) / "out.mp4"
|
| 173 |
+
out_path = out_dir / f"out.{video_format}"
|
| 174 |
+
|
| 175 |
+
if video_format == 'gif':
|
| 176 |
+
vid_to_gif(gen_path, out_dir, scale=256, fps=args.fps)
|
| 177 |
+
else:
|
| 178 |
+
shutil.copy2(gen_path, out_path)
|
| 179 |
+
|
| 180 |
+
return out_path
|
| 181 |
+
|
| 182 |
+
def run_alignment(self, image_path):
|
| 183 |
+
aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor)
|
| 184 |
+
print("Aligned image has shape: {}".format(aligned_image.size))
|
| 185 |
+
return aligned_image
|
| 186 |
+
|
| 187 |
+
def run_on_batch(self, inputs):
|
| 188 |
+
images, latents = self.e4e_net(
|
| 189 |
+
inputs.to("cuda").float(), randomize_noise=False, return_latents=True
|
| 190 |
+
)
|
| 191 |
+
return images, latents
|
| 192 |
+
|
| 193 |
+
editor = ImageEditor()
|
| 194 |
+
|
| 195 |
+
title = "StyleGAN-NADA"
|
| 196 |
+
description = "Gradio Demo for StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators (SIGGRAPH 2022). To use it, upload your image and select a target style. More information about the paper and training new models can be found below."
|
| 197 |
+
|
| 198 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.00946' target='_blank'>StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators</a> | <a href='https://stylegan-nada.github.io/' target='_blank'>Project Page</a> | <a href='https://github.com/rinongal/StyleGAN-nada' target='_blank'>Code</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=rinong_sgnada' alt='visitor badge'></center>"
|
| 199 |
+
|
| 200 |
+
gr.Interface(editor.predict, [gr.inputs.Image(type="pil"),
|
| 201 |
+
gr.inputs.Dropdown(choices=editor.get_style_list(), type="value", default='base', label="Model"),
|
| 202 |
+
gr.inputs.Textbox(lines=1, placeholder=None, default="joker,anime,modigliani", label="Style List", optional=True),
|
| 203 |
+
gr.inputs.Checkbox(default=False, label="Generate Video?", optional=False),
|
| 204 |
+
gr.inputs.Checkbox(default=False, label="With Editing?", optional=False),
|
| 205 |
+
gr.inputs.Radio(choices=["gif", "mp4"], type="value", default='mp4', label="Video Format")],
|
| 206 |
+
gr.outputs.Image(type="file"), title=title, description=description, article=article, allow_flagging=False, allow_screenshot=False).launch()
|
| 207 |
+
|
generate_videos.py
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
Tool for generating editing videos across different domains.
|
| 3 |
+
|
| 4 |
+
Given a set of latent codes and pre-trained models, it will interpolate between the different codes in each of the target domains
|
| 5 |
+
and combine the resulting images into a video.
|
| 6 |
+
|
| 7 |
+
Example run command:
|
| 8 |
+
|
| 9 |
+
python generate_videos.py --ckpt /model_dir/pixar.pt \
|
| 10 |
+
/model_dir/ukiyoe.pt \
|
| 11 |
+
/model_dir/edvard_munch.pt \
|
| 12 |
+
/model_dir/botero.pt \
|
| 13 |
+
--out_dir /output/video/ \
|
| 14 |
+
--source_latent /latents/latent000.npy \
|
| 15 |
+
--target_latents /latents/
|
| 16 |
+
|
| 17 |
+
'''
|
| 18 |
+
|
| 19 |
+
import os
|
| 20 |
+
import argparse
|
| 21 |
+
|
| 22 |
+
import torch
|
| 23 |
+
from torchvision import utils
|
| 24 |
+
|
| 25 |
+
from model.sg2_model import Generator
|
| 26 |
+
from tqdm import tqdm
|
| 27 |
+
from pathlib import Path
|
| 28 |
+
|
| 29 |
+
import numpy as np
|
| 30 |
+
|
| 31 |
+
import subprocess
|
| 32 |
+
import shutil
|
| 33 |
+
import copy
|
| 34 |
+
|
| 35 |
+
VALID_EDITS = ["pose", "age", "smile", "gender", "hair_length", "beard"]
|
| 36 |
+
|
| 37 |
+
SUGGESTED_DISTANCES = {
|
| 38 |
+
"pose": (3.0, -3.0),
|
| 39 |
+
"smile": (2.0, -2.0),
|
| 40 |
+
"age": (4.0, -4.0),
|
| 41 |
+
"gender": (3.0, -3.0),
|
| 42 |
+
"hair_length": (None, -4.0),
|
| 43 |
+
"beard": (2.0, None)
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
def project_code(latent_code, boundary, distance=3.0):
|
| 47 |
+
|
| 48 |
+
if len(boundary) == 2:
|
| 49 |
+
boundary = boundary.reshape(1, 1, -1)
|
| 50 |
+
|
| 51 |
+
return latent_code + distance * boundary
|
| 52 |
+
|
| 53 |
+
def generate_frames(args, source_latent, g_ema_list, output_dir):
|
| 54 |
+
|
| 55 |
+
alphas = np.linspace(0, 1, num=20)
|
| 56 |
+
|
| 57 |
+
interpolate_func = interpolate_with_boundaries # default
|
| 58 |
+
if args.target_latents: # if provided with targets
|
| 59 |
+
interpolate_func = interpolate_with_target_latents
|
| 60 |
+
if args.unedited_frames: # if only interpolating through generators
|
| 61 |
+
interpolate_func = duplicate_latent
|
| 62 |
+
|
| 63 |
+
latents = interpolate_func(args, source_latent, alphas)
|
| 64 |
+
|
| 65 |
+
segments = len(g_ema_list) - 1
|
| 66 |
+
if segments:
|
| 67 |
+
segment_length = len(latents) / segments
|
| 68 |
+
|
| 69 |
+
g_ema = copy.deepcopy(g_ema_list[0])
|
| 70 |
+
|
| 71 |
+
src_pars = dict(g_ema.named_parameters())
|
| 72 |
+
mix_pars = [dict(model.named_parameters()) for model in g_ema_list]
|
| 73 |
+
else:
|
| 74 |
+
g_ema = g_ema_list[0]
|
| 75 |
+
|
| 76 |
+
print("Generating frames for video...")
|
| 77 |
+
for idx, latent in tqdm(enumerate(latents), total=len(latents)):
|
| 78 |
+
|
| 79 |
+
if segments:
|
| 80 |
+
mix_alpha = (idx % segment_length) * 1.0 / segment_length
|
| 81 |
+
segment_id = int(idx // segment_length)
|
| 82 |
+
|
| 83 |
+
for k in src_pars.keys():
|
| 84 |
+
src_pars[k].data.copy_(mix_pars[segment_id][k] * (1 - mix_alpha) + mix_pars[segment_id + 1][k] * mix_alpha)
|
| 85 |
+
|
| 86 |
+
if idx == 0 or segments or latent is not latents[idx - 1]:
|
| 87 |
+
w = torch.from_numpy(latent).float().cuda()
|
| 88 |
+
|
| 89 |
+
with torch.no_grad():
|
| 90 |
+
img, _ = g_ema([w], input_is_latent=True, truncation=1, randomize_noise=False)
|
| 91 |
+
|
| 92 |
+
utils.save_image(img, f"{output_dir}/{str(idx).zfill(3)}.jpg", nrow=1, normalize=True, scale_each=True, range=(-1, 1))
|
| 93 |
+
|
| 94 |
+
def interpolate_forward_backward(source_latent, target_latent, alphas):
|
| 95 |
+
latents_forward = [a * target_latent + (1-a) * source_latent for a in alphas] # interpolate from source to target
|
| 96 |
+
latents_backward = latents_forward[::-1] # interpolate from target to source
|
| 97 |
+
return latents_forward + [target_latent] * 20 + latents_backward # forward + short delay at target + return
|
| 98 |
+
|
| 99 |
+
def duplicate_latent(args, source_latent, alphas):
|
| 100 |
+
return [source_latent for _ in range(args.unedited_frames)]
|
| 101 |
+
|
| 102 |
+
def interpolate_with_boundaries(args, source_latent, alphas):
|
| 103 |
+
edit_directions = args.edit_directions or ['pose', 'smile', 'gender', 'age', 'hair_length']
|
| 104 |
+
|
| 105 |
+
# interpolate latent codes with all targets
|
| 106 |
+
|
| 107 |
+
print("Interpolating latent codes...")
|
| 108 |
+
|
| 109 |
+
boundary_dir = Path(os.path.abspath(__file__)).parents[1].joinpath("editing", "interfacegan_boundaries")
|
| 110 |
+
|
| 111 |
+
boundaries_and_distances = []
|
| 112 |
+
for direction_type in edit_directions:
|
| 113 |
+
distances = SUGGESTED_DISTANCES[direction_type]
|
| 114 |
+
boundary = torch.load(os.path.join(boundary_dir, f'{direction_type}.pt')).cpu().detach().numpy()
|
| 115 |
+
|
| 116 |
+
for distance in distances:
|
| 117 |
+
if distance:
|
| 118 |
+
boundaries_and_distances.append((boundary, distance))
|
| 119 |
+
|
| 120 |
+
latents = []
|
| 121 |
+
for boundary, distance in boundaries_and_distances:
|
| 122 |
+
|
| 123 |
+
target_latent = project_code(source_latent, boundary, distance)
|
| 124 |
+
latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas))
|
| 125 |
+
|
| 126 |
+
return latents
|
| 127 |
+
|
| 128 |
+
def interpolate_with_target_latents(args, source_latent, alphas):
|
| 129 |
+
# interpolate latent codes with all targets
|
| 130 |
+
|
| 131 |
+
print("Interpolating latent codes...")
|
| 132 |
+
|
| 133 |
+
latents = []
|
| 134 |
+
for target_latent_path in args.target_latents:
|
| 135 |
+
|
| 136 |
+
if target_latent_path == args.source_latent:
|
| 137 |
+
continue
|
| 138 |
+
|
| 139 |
+
target_latent = np.load(target_latent_path, allow_pickle=True)
|
| 140 |
+
|
| 141 |
+
latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas))
|
| 142 |
+
|
| 143 |
+
return latents
|
| 144 |
+
|
| 145 |
+
def video_from_interpolations(fps, output_dir):
|
| 146 |
+
|
| 147 |
+
# combine frames to a video
|
| 148 |
+
command = ["ffmpeg",
|
| 149 |
+
"-r", f"{fps}",
|
| 150 |
+
"-i", f"{output_dir}/%03d.jpg",
|
| 151 |
+
"-c:v", "libx264",
|
| 152 |
+
"-vf", f"fps={fps}",
|
| 153 |
+
"-pix_fmt", "yuv420p",
|
| 154 |
+
f"{output_dir}/out.mp4"]
|
| 155 |
+
|
| 156 |
+
subprocess.call(command)
|
| 157 |
+
|
| 158 |
+
def merge_videos(output_dir, num_subdirs):
|
| 159 |
+
|
| 160 |
+
output_file = os.path.join(output_dir, "combined.mp4")
|
| 161 |
+
|
| 162 |
+
if num_subdirs == 1: # if we only have one video, just copy it over
|
| 163 |
+
shutil.copy2(os.path.join(output_dir, str(0), "out.mp4"), output_file)
|
| 164 |
+
else: # otherwise merge using ffmpeg
|
| 165 |
+
command = ["ffmpeg"]
|
| 166 |
+
for dir in range(num_subdirs):
|
| 167 |
+
command.extend(['-i', os.path.join(output_dir, str(dir), "out.mp4")])
|
| 168 |
+
|
| 169 |
+
sqrt_subdirs = int(num_subdirs ** .5)
|
| 170 |
+
|
| 171 |
+
if (sqrt_subdirs ** 2) != num_subdirs:
|
| 172 |
+
raise ValueError("Number of checkpoints cannot be arranged in a square grid")
|
| 173 |
+
|
| 174 |
+
command.append("-filter_complex")
|
| 175 |
+
|
| 176 |
+
filter_string = ""
|
| 177 |
+
vstack_string = ""
|
| 178 |
+
for row in range(sqrt_subdirs):
|
| 179 |
+
row_str = ""
|
| 180 |
+
for col in range(sqrt_subdirs):
|
| 181 |
+
row_str += f"[{row * sqrt_subdirs + col}:v]"
|
| 182 |
+
|
| 183 |
+
letter = chr(ord('A')+row)
|
| 184 |
+
row_str += f"hstack=inputs={sqrt_subdirs}[{letter}];"
|
| 185 |
+
vstack_string += f"[{letter}]"
|
| 186 |
+
|
| 187 |
+
filter_string += row_str
|
| 188 |
+
|
| 189 |
+
vstack_string += f"vstack=inputs={sqrt_subdirs}[out]"
|
| 190 |
+
filter_string += vstack_string
|
| 191 |
+
|
| 192 |
+
command.extend([filter_string, "-map", "[out]", output_file])
|
| 193 |
+
|
| 194 |
+
subprocess.call(command)
|
| 195 |
+
|
| 196 |
+
def vid_to_gif(vid_path, output_dir, scale=256, fps=35):
|
| 197 |
+
|
| 198 |
+
command = ["ffmpeg",
|
| 199 |
+
"-i", f"{vid_path}",
|
| 200 |
+
"-vf", f"fps={fps},scale={scale}:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1]fifo[s2];[s2][p]paletteuse",
|
| 201 |
+
"-loop", "0",
|
| 202 |
+
f"{output_dir}/out.gif"]
|
| 203 |
+
|
| 204 |
+
subprocess.call(command)
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
if __name__ == '__main__':
|
| 208 |
+
device = 'cuda'
|
| 209 |
+
|
| 210 |
+
parser = argparse.ArgumentParser()
|
| 211 |
+
|
| 212 |
+
parser.add_argument('--size', type=int, default=1024)
|
| 213 |
+
parser.add_argument('--ckpt', type=str, nargs="+", required=True, help="Path to one or more pre-trained generator checkpoints.")
|
| 214 |
+
parser.add_argument('--channel_multiplier', type=int, default=2)
|
| 215 |
+
parser.add_argument('--out_dir', type=str, required=True, help="Directory where output files will be placed")
|
| 216 |
+
parser.add_argument('--source_latent', type=str, required=True, help="Path to an .npy file containing an initial latent code")
|
| 217 |
+
parser.add_argument('--target_latents', nargs="+", type=str, help="A list of paths to .npy files containing target latent codes to interpolate towards, or a directory containing such .npy files.")
|
| 218 |
+
parser.add_argument('--force', '-f', action='store_true', help="Force run with non-empty directory. Image files not overwritten by the proccess may still be included in the final video")
|
| 219 |
+
parser.add_argument('--fps', default=35, type=int, help='Frames per second in the generated videos.')
|
| 220 |
+
parser.add_argument('--edit_directions', nargs="+", type=str, help=f"A list of edit directions to use in video generation (if not using a target latent directory). Available directions are: {VALID_EDITS}")
|
| 221 |
+
parser.add_argument('--unedited_frames', type=int, default=0, help="Used to generate videos with no latent editing. If set to a positive number and target_latents is not provided, will simply duplicate the initial frame <unedited_frames> times.")
|
| 222 |
+
|
| 223 |
+
args = parser.parse_args()
|
| 224 |
+
|
| 225 |
+
os.makedirs(args.out_dir, exist_ok=True)
|
| 226 |
+
|
| 227 |
+
if not args.force and os.listdir(args.out_dir):
|
| 228 |
+
print("Output directory is not empty. Either delete the directory content or re-run with -f.")
|
| 229 |
+
exit(0)
|
| 230 |
+
|
| 231 |
+
if args.target_latents and len(args.target_latents) == 1 and os.path.isdir(args.target_latents[0]):
|
| 232 |
+
args.target_latents = [os.path.join(args.target_latents[0], file_name) for file_name in os.listdir(args.target_latents[0]) if file_name.endswith(".npy")]
|
| 233 |
+
args.target_latents = sorted(args.target_latents)
|
| 234 |
+
|
| 235 |
+
args.latent = 512
|
| 236 |
+
args.n_mlp = 8
|
| 237 |
+
|
| 238 |
+
g_ema = Generator(
|
| 239 |
+
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
|
| 240 |
+
).to(device)
|
| 241 |
+
|
| 242 |
+
source_latent = np.load(args.source_latent, allow_pickle=True)
|
| 243 |
+
|
| 244 |
+
for idx, ckpt_path in enumerate(args.ckpt):
|
| 245 |
+
print(f"Generating video using checkpoint: {ckpt_path}")
|
| 246 |
+
checkpoint = torch.load(ckpt_path)
|
| 247 |
+
|
| 248 |
+
g_ema.load_state_dict(checkpoint['g_ema'])
|
| 249 |
+
|
| 250 |
+
output_dir = os.path.join(args.out_dir, str(idx))
|
| 251 |
+
os.makedirs(output_dir)
|
| 252 |
+
|
| 253 |
+
generate_frames(args, source_latent, [g_ema], output_dir)
|
| 254 |
+
video_from_interpolations(args.fps, output_dir)
|
| 255 |
+
|
| 256 |
+
merge_videos(args.out_dir, len(args.ckpt))
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
|
model/sg2_model.py
ADDED
|
@@ -0,0 +1,780 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import random
|
| 3 |
+
import functools
|
| 4 |
+
import operator
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from torch import nn
|
| 8 |
+
from torch.nn import functional as F
|
| 9 |
+
from torch.autograd import Function
|
| 10 |
+
|
| 11 |
+
from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d, conv2d_gradfix
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class PixelNorm(nn.Module):
|
| 15 |
+
def __init__(self):
|
| 16 |
+
super().__init__()
|
| 17 |
+
|
| 18 |
+
def forward(self, input):
|
| 19 |
+
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def make_kernel(k):
|
| 23 |
+
k = torch.tensor(k, dtype=torch.float32)
|
| 24 |
+
|
| 25 |
+
if k.ndim == 1:
|
| 26 |
+
k = k[None, :] * k[:, None]
|
| 27 |
+
|
| 28 |
+
k /= k.sum()
|
| 29 |
+
|
| 30 |
+
return k
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class Upsample(nn.Module):
|
| 34 |
+
def __init__(self, kernel, factor=2):
|
| 35 |
+
super().__init__()
|
| 36 |
+
|
| 37 |
+
self.factor = factor
|
| 38 |
+
kernel = make_kernel(kernel) * (factor ** 2)
|
| 39 |
+
self.register_buffer("kernel", kernel)
|
| 40 |
+
|
| 41 |
+
p = kernel.shape[0] - factor
|
| 42 |
+
|
| 43 |
+
pad0 = (p + 1) // 2 + factor - 1
|
| 44 |
+
pad1 = p // 2
|
| 45 |
+
|
| 46 |
+
self.pad = (pad0, pad1)
|
| 47 |
+
|
| 48 |
+
def forward(self, input):
|
| 49 |
+
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
|
| 50 |
+
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class Downsample(nn.Module):
|
| 55 |
+
def __init__(self, kernel, factor=2):
|
| 56 |
+
super().__init__()
|
| 57 |
+
|
| 58 |
+
self.factor = factor
|
| 59 |
+
kernel = make_kernel(kernel)
|
| 60 |
+
self.register_buffer("kernel", kernel)
|
| 61 |
+
|
| 62 |
+
p = kernel.shape[0] - factor
|
| 63 |
+
|
| 64 |
+
pad0 = (p + 1) // 2
|
| 65 |
+
pad1 = p // 2
|
| 66 |
+
|
| 67 |
+
self.pad = (pad0, pad1)
|
| 68 |
+
|
| 69 |
+
def forward(self, input):
|
| 70 |
+
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
|
| 71 |
+
|
| 72 |
+
return out
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class Blur(nn.Module):
|
| 76 |
+
def __init__(self, kernel, pad, upsample_factor=1):
|
| 77 |
+
super().__init__()
|
| 78 |
+
|
| 79 |
+
kernel = make_kernel(kernel)
|
| 80 |
+
|
| 81 |
+
if upsample_factor > 1:
|
| 82 |
+
kernel = kernel * (upsample_factor ** 2)
|
| 83 |
+
|
| 84 |
+
self.register_buffer("kernel", kernel)
|
| 85 |
+
|
| 86 |
+
self.pad = pad
|
| 87 |
+
|
| 88 |
+
def forward(self, input):
|
| 89 |
+
out = upfirdn2d(input, self.kernel, pad=self.pad)
|
| 90 |
+
|
| 91 |
+
return out
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class EqualConv2d(nn.Module):
|
| 95 |
+
def __init__(
|
| 96 |
+
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
|
| 97 |
+
):
|
| 98 |
+
super().__init__()
|
| 99 |
+
|
| 100 |
+
self.weight = nn.Parameter(
|
| 101 |
+
torch.randn(out_channel, in_channel, kernel_size, kernel_size)
|
| 102 |
+
)
|
| 103 |
+
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
| 104 |
+
|
| 105 |
+
self.stride = stride
|
| 106 |
+
self.padding = padding
|
| 107 |
+
|
| 108 |
+
if bias:
|
| 109 |
+
self.bias = nn.Parameter(torch.zeros(out_channel))
|
| 110 |
+
|
| 111 |
+
else:
|
| 112 |
+
self.bias = None
|
| 113 |
+
|
| 114 |
+
def forward(self, input):
|
| 115 |
+
out = conv2d_gradfix.conv2d(
|
| 116 |
+
input,
|
| 117 |
+
self.weight * self.scale,
|
| 118 |
+
bias=self.bias,
|
| 119 |
+
stride=self.stride,
|
| 120 |
+
padding=self.padding,
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
return out
|
| 124 |
+
|
| 125 |
+
def __repr__(self):
|
| 126 |
+
return (
|
| 127 |
+
f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},"
|
| 128 |
+
f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})"
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class EqualLinear(nn.Module):
|
| 133 |
+
def __init__(
|
| 134 |
+
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
|
| 135 |
+
):
|
| 136 |
+
super().__init__()
|
| 137 |
+
|
| 138 |
+
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
| 139 |
+
|
| 140 |
+
if bias:
|
| 141 |
+
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
| 142 |
+
|
| 143 |
+
else:
|
| 144 |
+
self.bias = None
|
| 145 |
+
|
| 146 |
+
self.activation = activation
|
| 147 |
+
|
| 148 |
+
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
| 149 |
+
self.lr_mul = lr_mul
|
| 150 |
+
|
| 151 |
+
def forward(self, input):
|
| 152 |
+
if self.activation:
|
| 153 |
+
out = F.linear(input, self.weight * self.scale)
|
| 154 |
+
out = fused_leaky_relu(out, self.bias * self.lr_mul)
|
| 155 |
+
|
| 156 |
+
else:
|
| 157 |
+
out = F.linear(
|
| 158 |
+
input, self.weight * self.scale, bias=self.bias * self.lr_mul
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
return out
|
| 162 |
+
|
| 163 |
+
def __repr__(self):
|
| 164 |
+
return (
|
| 165 |
+
f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})"
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
class ModulatedConv2d(nn.Module):
|
| 170 |
+
def __init__(
|
| 171 |
+
self,
|
| 172 |
+
in_channel,
|
| 173 |
+
out_channel,
|
| 174 |
+
kernel_size,
|
| 175 |
+
style_dim,
|
| 176 |
+
demodulate=True,
|
| 177 |
+
upsample=False,
|
| 178 |
+
downsample=False,
|
| 179 |
+
blur_kernel=[1, 3, 3, 1],
|
| 180 |
+
fused=True,
|
| 181 |
+
):
|
| 182 |
+
super().__init__()
|
| 183 |
+
|
| 184 |
+
self.eps = 1e-8
|
| 185 |
+
self.kernel_size = kernel_size
|
| 186 |
+
self.in_channel = in_channel
|
| 187 |
+
self.out_channel = out_channel
|
| 188 |
+
self.upsample = upsample
|
| 189 |
+
self.downsample = downsample
|
| 190 |
+
|
| 191 |
+
if upsample:
|
| 192 |
+
factor = 2
|
| 193 |
+
p = (len(blur_kernel) - factor) - (kernel_size - 1)
|
| 194 |
+
pad0 = (p + 1) // 2 + factor - 1
|
| 195 |
+
pad1 = p // 2 + 1
|
| 196 |
+
|
| 197 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
|
| 198 |
+
|
| 199 |
+
if downsample:
|
| 200 |
+
factor = 2
|
| 201 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
| 202 |
+
pad0 = (p + 1) // 2
|
| 203 |
+
pad1 = p // 2
|
| 204 |
+
|
| 205 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
|
| 206 |
+
|
| 207 |
+
fan_in = in_channel * kernel_size ** 2
|
| 208 |
+
self.scale = 1 / math.sqrt(fan_in)
|
| 209 |
+
self.padding = kernel_size // 2
|
| 210 |
+
|
| 211 |
+
self.weight = nn.Parameter(
|
| 212 |
+
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
|
| 216 |
+
|
| 217 |
+
self.demodulate = demodulate
|
| 218 |
+
self.fused = fused
|
| 219 |
+
|
| 220 |
+
def __repr__(self):
|
| 221 |
+
return (
|
| 222 |
+
f"{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, "
|
| 223 |
+
f"upsample={self.upsample}, downsample={self.downsample})"
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
def forward(self, input, style, is_s_code=False):
|
| 227 |
+
batch, in_channel, height, width = input.shape
|
| 228 |
+
|
| 229 |
+
if not self.fused:
|
| 230 |
+
weight = self.scale * self.weight.squeeze(0)
|
| 231 |
+
|
| 232 |
+
if is_s_code:
|
| 233 |
+
style = style[self.modulation]
|
| 234 |
+
else:
|
| 235 |
+
style = self.modulation(style)
|
| 236 |
+
|
| 237 |
+
if self.demodulate:
|
| 238 |
+
w = weight.unsqueeze(0) * style.view(batch, 1, in_channel, 1, 1)
|
| 239 |
+
dcoefs = (w.square().sum((2, 3, 4)) + 1e-8).rsqrt()
|
| 240 |
+
|
| 241 |
+
input = input * style.reshape(batch, in_channel, 1, 1)
|
| 242 |
+
|
| 243 |
+
if self.upsample:
|
| 244 |
+
weight = weight.transpose(0, 1)
|
| 245 |
+
out = conv2d_gradfix.conv_transpose2d(
|
| 246 |
+
input, weight, padding=0, stride=2
|
| 247 |
+
)
|
| 248 |
+
out = self.blur(out)
|
| 249 |
+
|
| 250 |
+
elif self.downsample:
|
| 251 |
+
input = self.blur(input)
|
| 252 |
+
out = conv2d_gradfix.conv2d(input, weight, padding=0, stride=2)
|
| 253 |
+
|
| 254 |
+
else:
|
| 255 |
+
out = conv2d_gradfix.conv2d(input, weight, padding=self.padding)
|
| 256 |
+
|
| 257 |
+
if self.demodulate:
|
| 258 |
+
out = out * dcoefs.view(batch, -1, 1, 1)
|
| 259 |
+
|
| 260 |
+
return out
|
| 261 |
+
|
| 262 |
+
if is_s_code:
|
| 263 |
+
style = style[self.modulation]
|
| 264 |
+
else:
|
| 265 |
+
style = self.modulation(style)
|
| 266 |
+
|
| 267 |
+
style = style.view(batch, 1, in_channel, 1, 1)
|
| 268 |
+
weight = self.scale * self.weight * style
|
| 269 |
+
|
| 270 |
+
if self.demodulate:
|
| 271 |
+
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
|
| 272 |
+
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
|
| 273 |
+
|
| 274 |
+
weight = weight.view(
|
| 275 |
+
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
if self.upsample:
|
| 279 |
+
input = input.view(1, batch * in_channel, height, width)
|
| 280 |
+
weight = weight.view(
|
| 281 |
+
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
| 282 |
+
)
|
| 283 |
+
weight = weight.transpose(1, 2).reshape(
|
| 284 |
+
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
|
| 285 |
+
)
|
| 286 |
+
out = conv2d_gradfix.conv_transpose2d(
|
| 287 |
+
input, weight, padding=0, stride=2, groups=batch
|
| 288 |
+
)
|
| 289 |
+
_, _, height, width = out.shape
|
| 290 |
+
out = out.view(batch, self.out_channel, height, width)
|
| 291 |
+
out = self.blur(out)
|
| 292 |
+
|
| 293 |
+
elif self.downsample:
|
| 294 |
+
input = self.blur(input)
|
| 295 |
+
_, _, height, width = input.shape
|
| 296 |
+
input = input.view(1, batch * in_channel, height, width)
|
| 297 |
+
out = conv2d_gradfix.conv2d(
|
| 298 |
+
input, weight, padding=0, stride=2, groups=batch
|
| 299 |
+
)
|
| 300 |
+
_, _, height, width = out.shape
|
| 301 |
+
out = out.view(batch, self.out_channel, height, width)
|
| 302 |
+
|
| 303 |
+
else:
|
| 304 |
+
input = input.view(1, batch * in_channel, height, width)
|
| 305 |
+
out = conv2d_gradfix.conv2d(
|
| 306 |
+
input, weight, padding=self.padding, groups=batch
|
| 307 |
+
)
|
| 308 |
+
_, _, height, width = out.shape
|
| 309 |
+
out = out.view(batch, self.out_channel, height, width)
|
| 310 |
+
|
| 311 |
+
return out
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
class NoiseInjection(nn.Module):
|
| 315 |
+
def __init__(self):
|
| 316 |
+
super().__init__()
|
| 317 |
+
|
| 318 |
+
self.weight = nn.Parameter(torch.zeros(1))
|
| 319 |
+
|
| 320 |
+
def forward(self, image, noise=None):
|
| 321 |
+
if noise is None:
|
| 322 |
+
batch, _, height, width = image.shape
|
| 323 |
+
noise = image.new_empty(batch, 1, height, width).normal_()
|
| 324 |
+
|
| 325 |
+
return image + self.weight * noise
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
class ConstantInput(nn.Module):
|
| 329 |
+
def __init__(self, channel, size=4):
|
| 330 |
+
super().__init__()
|
| 331 |
+
|
| 332 |
+
self.input = nn.Parameter(torch.randn(1, channel, size, size))
|
| 333 |
+
|
| 334 |
+
def forward(self, input, is_s_code=False):
|
| 335 |
+
if not is_s_code:
|
| 336 |
+
batch = input.shape[0]
|
| 337 |
+
else:
|
| 338 |
+
batch = next(iter(input.values())).shape[0]
|
| 339 |
+
|
| 340 |
+
out = self.input.repeat(batch, 1, 1, 1)
|
| 341 |
+
|
| 342 |
+
return out
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
class StyledConv(nn.Module):
|
| 346 |
+
def __init__(
|
| 347 |
+
self,
|
| 348 |
+
in_channel,
|
| 349 |
+
out_channel,
|
| 350 |
+
kernel_size,
|
| 351 |
+
style_dim,
|
| 352 |
+
upsample=False,
|
| 353 |
+
blur_kernel=[1, 3, 3, 1],
|
| 354 |
+
demodulate=True,
|
| 355 |
+
):
|
| 356 |
+
super().__init__()
|
| 357 |
+
|
| 358 |
+
self.conv = ModulatedConv2d(
|
| 359 |
+
in_channel,
|
| 360 |
+
out_channel,
|
| 361 |
+
kernel_size,
|
| 362 |
+
style_dim,
|
| 363 |
+
upsample=upsample,
|
| 364 |
+
blur_kernel=blur_kernel,
|
| 365 |
+
demodulate=demodulate,
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
self.noise = NoiseInjection()
|
| 369 |
+
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
|
| 370 |
+
# self.activate = ScaledLeakyReLU(0.2)
|
| 371 |
+
self.activate = FusedLeakyReLU(out_channel)
|
| 372 |
+
|
| 373 |
+
def forward(self, input, style, noise=None, is_s_code=False):
|
| 374 |
+
out = self.conv(input, style, is_s_code=is_s_code)
|
| 375 |
+
out = self.noise(out, noise=noise)
|
| 376 |
+
# out = out + self.bias
|
| 377 |
+
out = self.activate(out)
|
| 378 |
+
|
| 379 |
+
return out
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
class ToRGB(nn.Module):
|
| 383 |
+
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
|
| 384 |
+
super().__init__()
|
| 385 |
+
|
| 386 |
+
if upsample:
|
| 387 |
+
self.upsample = Upsample(blur_kernel)
|
| 388 |
+
|
| 389 |
+
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
|
| 390 |
+
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
| 391 |
+
|
| 392 |
+
def forward(self, input, style, skip=None, is_s_code=False):
|
| 393 |
+
out = self.conv(input, style, is_s_code=is_s_code)
|
| 394 |
+
out = out + self.bias
|
| 395 |
+
|
| 396 |
+
if skip is not None:
|
| 397 |
+
skip = self.upsample(skip)
|
| 398 |
+
|
| 399 |
+
out = out + skip
|
| 400 |
+
|
| 401 |
+
return out
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
class Generator(nn.Module):
|
| 405 |
+
def __init__(
|
| 406 |
+
self,
|
| 407 |
+
size,
|
| 408 |
+
style_dim,
|
| 409 |
+
n_mlp,
|
| 410 |
+
channel_multiplier=2,
|
| 411 |
+
blur_kernel=[1, 3, 3, 1],
|
| 412 |
+
lr_mlp=0.01,
|
| 413 |
+
):
|
| 414 |
+
super().__init__()
|
| 415 |
+
|
| 416 |
+
self.size = size
|
| 417 |
+
|
| 418 |
+
self.style_dim = style_dim
|
| 419 |
+
|
| 420 |
+
layers = [PixelNorm()]
|
| 421 |
+
|
| 422 |
+
for i in range(n_mlp):
|
| 423 |
+
layers.append(
|
| 424 |
+
EqualLinear(
|
| 425 |
+
style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu"
|
| 426 |
+
)
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
self.style = nn.Sequential(*layers)
|
| 430 |
+
|
| 431 |
+
self.channels = {
|
| 432 |
+
4: 512,
|
| 433 |
+
8: 512,
|
| 434 |
+
16: 512,
|
| 435 |
+
32: 512,
|
| 436 |
+
64: 256 * channel_multiplier,
|
| 437 |
+
128: 128 * channel_multiplier,
|
| 438 |
+
256: 64 * channel_multiplier,
|
| 439 |
+
512: 32 * channel_multiplier,
|
| 440 |
+
1024: 16 * channel_multiplier,
|
| 441 |
+
}
|
| 442 |
+
|
| 443 |
+
self.input = ConstantInput(self.channels[4])
|
| 444 |
+
self.conv1 = StyledConv(
|
| 445 |
+
self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
|
| 446 |
+
)
|
| 447 |
+
self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
|
| 448 |
+
|
| 449 |
+
self.log_size = int(math.log(size, 2))
|
| 450 |
+
self.num_layers = (self.log_size - 2) * 2 + 1
|
| 451 |
+
|
| 452 |
+
self.convs = nn.ModuleList()
|
| 453 |
+
self.upsamples = nn.ModuleList()
|
| 454 |
+
self.to_rgbs = nn.ModuleList()
|
| 455 |
+
self.noises = nn.Module()
|
| 456 |
+
|
| 457 |
+
in_channel = self.channels[4]
|
| 458 |
+
|
| 459 |
+
for layer_idx in range(self.num_layers):
|
| 460 |
+
res = (layer_idx + 5) // 2
|
| 461 |
+
shape = [1, 1, 2 ** res, 2 ** res]
|
| 462 |
+
self.noises.register_buffer(f"noise_{layer_idx}", torch.randn(*shape))
|
| 463 |
+
|
| 464 |
+
for i in range(3, self.log_size + 1):
|
| 465 |
+
out_channel = self.channels[2 ** i]
|
| 466 |
+
|
| 467 |
+
self.convs.append(
|
| 468 |
+
StyledConv(
|
| 469 |
+
in_channel,
|
| 470 |
+
out_channel,
|
| 471 |
+
3,
|
| 472 |
+
style_dim,
|
| 473 |
+
upsample=True,
|
| 474 |
+
blur_kernel=blur_kernel,
|
| 475 |
+
)
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
self.convs.append(
|
| 479 |
+
StyledConv(
|
| 480 |
+
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
|
| 481 |
+
)
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
self.to_rgbs.append(ToRGB(out_channel, style_dim))
|
| 485 |
+
|
| 486 |
+
in_channel = out_channel
|
| 487 |
+
|
| 488 |
+
self.n_latent = self.log_size * 2 - 2
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
self.modulation_layers = [self.conv1.conv.modulation, self.to_rgb1.conv.modulation] + \
|
| 492 |
+
[layer.conv.modulation for layer in self.convs] + \
|
| 493 |
+
[layer.conv.modulation for layer in self.to_rgbs]
|
| 494 |
+
|
| 495 |
+
def make_noise(self):
|
| 496 |
+
device = self.input.input.device
|
| 497 |
+
|
| 498 |
+
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
|
| 499 |
+
|
| 500 |
+
for i in range(3, self.log_size + 1):
|
| 501 |
+
for _ in range(2):
|
| 502 |
+
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
|
| 503 |
+
|
| 504 |
+
return noises
|
| 505 |
+
|
| 506 |
+
def mean_latent(self, n_latent):
|
| 507 |
+
latent_in = torch.randn(
|
| 508 |
+
n_latent, self.style_dim, device=self.input.input.device
|
| 509 |
+
)
|
| 510 |
+
latent = self.style(latent_in).mean(0, keepdim=True)
|
| 511 |
+
|
| 512 |
+
return latent
|
| 513 |
+
|
| 514 |
+
def get_latent(self, input):
|
| 515 |
+
return self.style(input)
|
| 516 |
+
|
| 517 |
+
def get_s_code(self, styles, input_is_latent):
|
| 518 |
+
|
| 519 |
+
if not input_is_latent:
|
| 520 |
+
styles = [self.style(s) for s in styles]
|
| 521 |
+
|
| 522 |
+
s_codes = [{layer: layer(s) for layer in self.modulation_layers} for s in styles] * len(styles)
|
| 523 |
+
|
| 524 |
+
return s_codes
|
| 525 |
+
|
| 526 |
+
def forward(
|
| 527 |
+
self,
|
| 528 |
+
styles,
|
| 529 |
+
return_latents=False,
|
| 530 |
+
inject_index=None,
|
| 531 |
+
truncation=1,
|
| 532 |
+
truncation_latent=None,
|
| 533 |
+
input_is_latent=False,
|
| 534 |
+
input_is_s_code=False,
|
| 535 |
+
noise=None,
|
| 536 |
+
randomize_noise=True,
|
| 537 |
+
):
|
| 538 |
+
if not input_is_s_code:
|
| 539 |
+
return self.forward_with_w(styles, return_latents, inject_index, truncation, truncation_latent, input_is_latent, noise, randomize_noise)
|
| 540 |
+
|
| 541 |
+
return self.forward_with_s(styles, return_latents, noise, randomize_noise)
|
| 542 |
+
|
| 543 |
+
def forward_with_w(
|
| 544 |
+
self,
|
| 545 |
+
styles,
|
| 546 |
+
return_latents=False,
|
| 547 |
+
inject_index=None,
|
| 548 |
+
truncation=1,
|
| 549 |
+
truncation_latent=None,
|
| 550 |
+
input_is_latent=False,
|
| 551 |
+
noise=None,
|
| 552 |
+
randomize_noise=True,
|
| 553 |
+
):
|
| 554 |
+
if not input_is_latent:
|
| 555 |
+
styles = [self.style(s) for s in styles]
|
| 556 |
+
|
| 557 |
+
if noise is None:
|
| 558 |
+
if randomize_noise:
|
| 559 |
+
noise = [None] * self.num_layers
|
| 560 |
+
else:
|
| 561 |
+
noise = [
|
| 562 |
+
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
|
| 563 |
+
]
|
| 564 |
+
|
| 565 |
+
if truncation < 1:
|
| 566 |
+
style_t = []
|
| 567 |
+
|
| 568 |
+
for style in styles:
|
| 569 |
+
style_t.append(
|
| 570 |
+
truncation_latent + truncation * (style - truncation_latent)
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
styles = style_t
|
| 574 |
+
|
| 575 |
+
if len(styles) < 2:
|
| 576 |
+
inject_index = self.n_latent
|
| 577 |
+
|
| 578 |
+
if styles[0].ndim < 3:
|
| 579 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
| 580 |
+
|
| 581 |
+
else:
|
| 582 |
+
latent = styles[0]
|
| 583 |
+
|
| 584 |
+
else:
|
| 585 |
+
if inject_index is None:
|
| 586 |
+
inject_index = random.randint(1, self.n_latent - 1)
|
| 587 |
+
|
| 588 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
| 589 |
+
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
|
| 590 |
+
|
| 591 |
+
latent = torch.cat([latent, latent2], 1)
|
| 592 |
+
|
| 593 |
+
out = self.input(latent)
|
| 594 |
+
out = self.conv1(out, latent[:, 0], noise=noise[0])
|
| 595 |
+
|
| 596 |
+
skip = self.to_rgb1(out, latent[:, 1])
|
| 597 |
+
|
| 598 |
+
i = 1
|
| 599 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
| 600 |
+
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
| 601 |
+
):
|
| 602 |
+
out = conv1(out, latent[:, i], noise=noise1)
|
| 603 |
+
out = conv2(out, latent[:, i + 1], noise=noise2)
|
| 604 |
+
skip = to_rgb(out, latent[:, i + 2], skip)
|
| 605 |
+
|
| 606 |
+
i += 2
|
| 607 |
+
|
| 608 |
+
image = skip
|
| 609 |
+
|
| 610 |
+
if return_latents:
|
| 611 |
+
return image, latent
|
| 612 |
+
|
| 613 |
+
else:
|
| 614 |
+
return image, None
|
| 615 |
+
|
| 616 |
+
def forward_with_s(
|
| 617 |
+
self,
|
| 618 |
+
styles,
|
| 619 |
+
return_latents=False,
|
| 620 |
+
noise=None,
|
| 621 |
+
randomize_noise=True,
|
| 622 |
+
):
|
| 623 |
+
|
| 624 |
+
if noise is None:
|
| 625 |
+
if randomize_noise:
|
| 626 |
+
noise = [None] * self.num_layers
|
| 627 |
+
else:
|
| 628 |
+
noise = [
|
| 629 |
+
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
|
| 630 |
+
]
|
| 631 |
+
|
| 632 |
+
out = self.input(styles, is_s_code=True)
|
| 633 |
+
out = self.conv1(out, styles, is_s_code=True, noise=noise[0])
|
| 634 |
+
|
| 635 |
+
skip = self.to_rgb1(out, styles, is_s_code=True)
|
| 636 |
+
|
| 637 |
+
i = 1
|
| 638 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
| 639 |
+
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
| 640 |
+
):
|
| 641 |
+
out = conv1(out, styles, is_s_code=True, noise=noise1)
|
| 642 |
+
out = conv2(out, styles, is_s_code=True, noise=noise2)
|
| 643 |
+
skip = to_rgb(out, styles, skip, is_s_code=True)
|
| 644 |
+
|
| 645 |
+
i += 2
|
| 646 |
+
|
| 647 |
+
image = skip
|
| 648 |
+
|
| 649 |
+
if return_latents:
|
| 650 |
+
return image, styles
|
| 651 |
+
|
| 652 |
+
else:
|
| 653 |
+
return image, None
|
| 654 |
+
|
| 655 |
+
class ConvLayer(nn.Sequential):
|
| 656 |
+
def __init__(
|
| 657 |
+
self,
|
| 658 |
+
in_channel,
|
| 659 |
+
out_channel,
|
| 660 |
+
kernel_size,
|
| 661 |
+
downsample=False,
|
| 662 |
+
blur_kernel=[1, 3, 3, 1],
|
| 663 |
+
bias=True,
|
| 664 |
+
activate=True,
|
| 665 |
+
):
|
| 666 |
+
layers = []
|
| 667 |
+
|
| 668 |
+
if downsample:
|
| 669 |
+
factor = 2
|
| 670 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
| 671 |
+
pad0 = (p + 1) // 2
|
| 672 |
+
pad1 = p // 2
|
| 673 |
+
|
| 674 |
+
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
|
| 675 |
+
|
| 676 |
+
stride = 2
|
| 677 |
+
self.padding = 0
|
| 678 |
+
|
| 679 |
+
else:
|
| 680 |
+
stride = 1
|
| 681 |
+
self.padding = kernel_size // 2
|
| 682 |
+
|
| 683 |
+
layers.append(
|
| 684 |
+
EqualConv2d(
|
| 685 |
+
in_channel,
|
| 686 |
+
out_channel,
|
| 687 |
+
kernel_size,
|
| 688 |
+
padding=self.padding,
|
| 689 |
+
stride=stride,
|
| 690 |
+
bias=bias and not activate,
|
| 691 |
+
)
|
| 692 |
+
)
|
| 693 |
+
|
| 694 |
+
if activate:
|
| 695 |
+
layers.append(FusedLeakyReLU(out_channel, bias=bias))
|
| 696 |
+
|
| 697 |
+
super().__init__(*layers)
|
| 698 |
+
|
| 699 |
+
|
| 700 |
+
class ResBlock(nn.Module):
|
| 701 |
+
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
|
| 702 |
+
super().__init__()
|
| 703 |
+
|
| 704 |
+
self.conv1 = ConvLayer(in_channel, in_channel, 3)
|
| 705 |
+
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
|
| 706 |
+
|
| 707 |
+
self.skip = ConvLayer(
|
| 708 |
+
in_channel, out_channel, 1, downsample=True, activate=False, bias=False
|
| 709 |
+
)
|
| 710 |
+
|
| 711 |
+
def forward(self, input):
|
| 712 |
+
out = self.conv1(input)
|
| 713 |
+
out = self.conv2(out)
|
| 714 |
+
|
| 715 |
+
skip = self.skip(input)
|
| 716 |
+
out = (out + skip) / math.sqrt(2)
|
| 717 |
+
|
| 718 |
+
return out
|
| 719 |
+
|
| 720 |
+
|
| 721 |
+
class Discriminator(nn.Module):
|
| 722 |
+
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
|
| 723 |
+
super().__init__()
|
| 724 |
+
|
| 725 |
+
channels = {
|
| 726 |
+
4: 512,
|
| 727 |
+
8: 512,
|
| 728 |
+
16: 512,
|
| 729 |
+
32: 512,
|
| 730 |
+
64: 256 * channel_multiplier,
|
| 731 |
+
128: 128 * channel_multiplier,
|
| 732 |
+
256: 64 * channel_multiplier,
|
| 733 |
+
512: 32 * channel_multiplier,
|
| 734 |
+
1024: 16 * channel_multiplier,
|
| 735 |
+
}
|
| 736 |
+
|
| 737 |
+
convs = [ConvLayer(3, channels[size], 1)]
|
| 738 |
+
|
| 739 |
+
log_size = int(math.log(size, 2))
|
| 740 |
+
|
| 741 |
+
in_channel = channels[size]
|
| 742 |
+
|
| 743 |
+
for i in range(log_size, 2, -1):
|
| 744 |
+
out_channel = channels[2 ** (i - 1)]
|
| 745 |
+
|
| 746 |
+
convs.append(ResBlock(in_channel, out_channel, blur_kernel))
|
| 747 |
+
|
| 748 |
+
in_channel = out_channel
|
| 749 |
+
|
| 750 |
+
self.convs = nn.Sequential(*convs)
|
| 751 |
+
|
| 752 |
+
self.stddev_group = 4
|
| 753 |
+
self.stddev_feat = 1
|
| 754 |
+
|
| 755 |
+
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
|
| 756 |
+
self.final_linear = nn.Sequential(
|
| 757 |
+
EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"),
|
| 758 |
+
EqualLinear(channels[4], 1),
|
| 759 |
+
)
|
| 760 |
+
|
| 761 |
+
def forward(self, input):
|
| 762 |
+
out = self.convs(input)
|
| 763 |
+
|
| 764 |
+
batch, channel, height, width = out.shape
|
| 765 |
+
group = min(batch, self.stddev_group)
|
| 766 |
+
stddev = out.view(
|
| 767 |
+
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
|
| 768 |
+
)
|
| 769 |
+
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
| 770 |
+
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
| 771 |
+
stddev = stddev.repeat(group, 1, height, width)
|
| 772 |
+
out = torch.cat([out, stddev], 1)
|
| 773 |
+
|
| 774 |
+
out = self.final_conv(out)
|
| 775 |
+
|
| 776 |
+
out = out.view(batch, -1)
|
| 777 |
+
out = self.final_linear(out)
|
| 778 |
+
|
| 779 |
+
return out
|
| 780 |
+
|