Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import gradio as gr | |
import os | |
import sys | |
import numpy as np | |
from e4e.models.psp import pSp | |
from util import * | |
from huggingface_hub import hf_hub_download | |
import os | |
import sys | |
import tempfile | |
import shutil | |
from argparse import Namespace | |
from pathlib import Path | |
import shutil | |
import dlib | |
import numpy as np | |
import torchvision.transforms as transforms | |
from torchvision import utils | |
from PIL import Image | |
from model.sg2_model import Generator | |
from generate_videos import generate_frames, video_from_interpolations, vid_to_gif | |
model_dir = "models" | |
os.makedirs(model_dir, exist_ok=True) | |
model_repos = {"e4e": ("akhaliq/JoJoGAN_e4e_ffhq_encode", "e4e_ffhq_encode.pt"), | |
"dlib": ("akhaliq/jojogan_dlib", "shape_predictor_68_face_landmarks.dat"), | |
"base": ("akhaliq/jojogan-stylegan2-ffhq-config-f", "stylegan2-ffhq-config-f.pt"), | |
"anime": ("rinong/stylegan-nada-models", "anime.pt"), | |
"joker": ("rinong/stylegan-nada-models", "joker.pt"), | |
"simpson": ("rinong/stylegan-nada-models", "simpson.pt"), | |
"ssj": ("rinong/stylegan-nada-models", "ssj.pt"), | |
"white_walker": ("rinong/stylegan-nada-models", "white_walker.pt"), | |
"zuckerberg": ("rinong/stylegan-nada-models", "zuckerberg.pt"), | |
"cubism": ("rinong/stylegan-nada-models", "cubism.pt"), | |
"disney_princess": ("rinong/stylegan-nada-models", "disney_princess.pt"), | |
"edvard_munch": ("rinong/stylegan-nada-models", "edvard_munch.pt"), | |
"van_gogh": ("rinong/stylegan-nada-models", "van_gogh.pt"), | |
"oil": ("rinong/stylegan-nada-models", "oil.pt"), | |
"rick_morty": ("rinong/stylegan-nada-models", "rick_morty.pt"), | |
"botero": ("rinong/stylegan-nada-models", "botero.pt"), | |
"crochet": ("rinong/stylegan-nada-models", "crochet.pt"), | |
"modigliani": ("rinong/stylegan-nada-models", "modigliani.pt"), | |
"shrek": ("rinong/stylegan-nada-models", "shrek.pt"), | |
} | |
def get_models(): | |
os.makedirs(model_dir, exist_ok=True) | |
model_paths = {} | |
for model_name, repo_details in model_repos.items(): | |
download_path = hf_hub_download(repo_id=repo_details[0], filename=repo_details[1]) | |
model_paths[model_name] = download_path | |
return model_paths | |
model_paths = get_models() | |
class ImageEditor(object): | |
def __init__(self): | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
latent_size = 512 | |
n_mlp = 8 | |
channel_mult = 2 | |
model_size = 1024 | |
self.generators = {} | |
self.model_list = [name for name in model_paths.keys() if name not in ["e4e", "dlib"]] | |
for model in self.model_list: | |
g_ema = Generator( | |
model_size, latent_size, n_mlp, channel_multiplier=channel_mult | |
).to(self.device) | |
checkpoint = torch.load(model_paths[model], map_location=self.device) | |
g_ema.load_state_dict(checkpoint['g_ema']) | |
self.generators[model] = g_ema | |
self.experiment_args = {"model_path": model_paths["e4e"]} | |
self.experiment_args["transform"] = transforms.Compose( | |
[ | |
transforms.Resize((256, 256)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
] | |
) | |
self.resize_dims = (256, 256) | |
model_path = self.experiment_args["model_path"] | |
ckpt = torch.load(model_path, map_location="cpu") | |
opts = ckpt["opts"] | |
opts["checkpoint_path"] = model_path | |
opts = Namespace(**opts) | |
self.e4e_net = pSp(opts, self.device) | |
self.e4e_net.eval() | |
self.shape_predictor = dlib.shape_predictor( | |
model_paths["dlib"] | |
) | |
print("setup complete") | |
def get_style_list(self): | |
style_list = ['all', 'list - enter below'] | |
for key in self.generators: | |
style_list.append(key) | |
return style_list | |
def predict( | |
self, | |
input, # Input image path | |
output_styles, # Which output style do you want to use? | |
generate_video, # Generate a video instead of an output image | |
with_editing, # Apply latent space editing to the generated video | |
video_format # Choose gif to display in browser, mp4 for higher-quality downloadable video | |
): | |
styles = output_styles | |
# @title Align image | |
input_image = self.run_alignment(str(input)) | |
input_image = input_image.resize(self.resize_dims) | |
img_transforms = self.experiment_args["transform"] | |
transformed_image = img_transforms(input_image) | |
with torch.no_grad(): | |
images, latents = self.run_on_batch(transformed_image.unsqueeze(0)) | |
result_image, latent = images[0], latents[0] | |
inverted_latent = latent.unsqueeze(0).unsqueeze(1) | |
out_dir = Path(tempfile.mkdtemp()) | |
out_path = out_dir / "out.jpg" | |
generators = [self.generators[style] for style in styles] | |
if not generate_video: | |
with torch.no_grad(): | |
img_list = [] | |
for g_ema in generators: | |
img, _ = g_ema(inverted_latent, input_is_latent=True, truncation=1, randomize_noise=False) | |
img_list.append(img) | |
out_img = torch.cat(img_list, axis=0) | |
utils.save_image(out_img, out_path, nrow=int(np.sqrt(out_img.size(0))), normalize=True, scale_each=True, range=(-1, 1)) | |
return Path(out_path) | |
return self.generate_vid(generators, inverted_latent, out_dir, video_format, with_editing) | |
def generate_vid(self, generators, latent, out_dir, video_format, with_editing): | |
np_latent = latent.squeeze(0).cpu().detach().numpy() | |
args = { | |
'fps': 24, | |
'target_latents': None, | |
'edit_directions': None, | |
'unedited_frames': 0 if with_editing else 40 * (len(generators) - 1) | |
} | |
args = Namespace(**args) | |
with tempfile.TemporaryDirectory() as dirpath: | |
generate_frames(args, np_latent, generators, dirpath) | |
video_from_interpolations(args.fps, dirpath) | |
gen_path = Path(dirpath) / "out.mp4" | |
out_path = out_dir / f"out.{video_format}" | |
if video_format == 'gif': | |
vid_to_gif(gen_path, out_dir, scale=256, fps=args.fps) | |
else: | |
shutil.copy2(gen_path, out_path) | |
return out_path | |
def run_alignment(self, image_path): | |
aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor) | |
print("Aligned image has shape: {}".format(aligned_image.size)) | |
return aligned_image | |
def run_on_batch(self, inputs): | |
images, latents = self.e4e_net( | |
inputs.to(self.device).float(), randomize_noise=False, return_latents=True | |
) | |
return images, latents | |
editor = ImageEditor() | |
def change_component_visibility(visible, components, assign_flipped = False): | |
if assign_flipped: | |
return [component.update(visible=not visible) for component in components] | |
return [component.update(visible=visible) for component in components] | |
blocks = gr.Blocks() | |
with blocks: | |
gr.Markdown("<h1><center>StyleGAN-NADA</center></h1>") | |
gr.Markdown( | |
"Demo for StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators (SIGGRAPH 2022)." | |
) | |
gr.Markdown( | |
"For more information about the paper and code for training your own models (with examples OR text), see below." | |
) | |
with gr.Column(): | |
input_img = gr.inputs.Image(type="filepath", label="Input image") | |
style_choice = gr.inputs.CheckboxGroup(choices=editor.get_style_list(), type="value", label="Choose your styles!") | |
with gr.Row(): | |
video_choice = gr.inputs.Checkbox(default=False, label="Generate Video?", optional=False) | |
edit_choice = gr.inputs.Checkbox(default=False, label="With Editing?", optional=False, visible=False) | |
vid_format_choice = gr.inputs.Radio(choices=["gif", "mp4"], type="value", default='mp4', label="Video Format", visible=False) | |
with gr.Row(): | |
img_button = gr.Button("Edit Image") | |
vid_button = gr.Button("Edit Image") | |
with gr.Column(): | |
img_output = gr.outputs.Image(type="file") | |
vid_output = gr.outputs.Video(visible=False) | |
video_choice.change(fn=change_component_visibility, inputs=[video_choice, [edit_choice, vid_format_choice, vid_output, vid_button]], outputs=[edit_choice, vid_format_choice, vid_output, vid_button]) | |
video_choice.change(fn=change_component_visibility, inputs=[video_choice, [img_output, img_button], True], outputs=[img_output, img_button]) | |
img_button.click(fn=editor.predict, inputs=[input_img, style_choice, video_choice, edit_choice, vid_format_choice], outputs=img_output) | |
vid_button.click(fn=editor.predict, inputs=[input_img, style_choice, video_choice, edit_choice, vid_format_choice], outputs=vid_output) | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.00946' target='_blank'>StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators</a> | <a href='https://stylegan-nada.github.io/' target='_blank'>Project Page</a> | <a href='https://github.com/rinongal/StyleGAN-nada' target='_blank'>Code</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=rinong_sgnada' alt='visitor badge'></center>" | |
gr.Markdown(article) | |
blocks.launch(enable_queue=True) |