Commit
·
08151c9
1
Parent(s):
27f9269
Upload 4 files
Browse files- app.py +201 -0
- preprocessor.pkl +3 -0
- requirements.txt +10 -0
- trained_model.sav +0 -0
app.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
import joblib
|
5 |
+
|
6 |
+
loaded_model = pickle.load(open('D:/Agri Sparta Indonesia/Credit Score/Multiclass Project Score/deploy/trained_model.sav', 'rb'))
|
7 |
+
preprocessor = joblib.load("D:/Agri Sparta Indonesia/Credit Score/Multiclass Project Score/deploy/preprocessor.pkl")
|
8 |
+
|
9 |
+
def obj_to_int(data):
|
10 |
+
# Mengganti nilai pada kolom planting_period
|
11 |
+
one_hot_enc = pd.get_dummies(data, columns=['planting_period', 'variety'])
|
12 |
+
|
13 |
+
return one_hot_enc
|
14 |
+
|
15 |
+
def transform_normalize(data, normalizer):
|
16 |
+
normalize_data = pd.DataFrame(normalizer.transform(data))
|
17 |
+
normalize_data.columns = data.columns
|
18 |
+
normalize_data.index = data.index
|
19 |
+
return normalize_data
|
20 |
+
|
21 |
+
def preprocess(data):
|
22 |
+
# 1. Encoding Categorical Value
|
23 |
+
X_encoded = obj_to_int(data)
|
24 |
+
|
25 |
+
required_features = ['planting_period_MT1',
|
26 |
+
'planting_period_MT2',
|
27 |
+
'planting_period_MT3',
|
28 |
+
'variety_Umum',
|
29 |
+
'variety_Hibrida'
|
30 |
+
]
|
31 |
+
|
32 |
+
existing_features = set(X_encoded.columns)
|
33 |
+
|
34 |
+
# Ambil perbedaan antara fitur yang dibutuhkan dan yang sudah ada
|
35 |
+
missing_features = set(required_features) - existing_features
|
36 |
+
|
37 |
+
list_missing_features = list(missing_features)
|
38 |
+
|
39 |
+
for feature in list_missing_features:
|
40 |
+
X_encoded[feature] = 0
|
41 |
+
|
42 |
+
# urutkan column sesuai data train
|
43 |
+
column_order = ['completion_rate',
|
44 |
+
'complete_time',
|
45 |
+
'profit','harvest',
|
46 |
+
'planting_period_MT1',
|
47 |
+
'planting_period_MT2',
|
48 |
+
'planting_period_MT3',
|
49 |
+
'variety_Hibrida',
|
50 |
+
'variety_Umum'
|
51 |
+
]
|
52 |
+
|
53 |
+
X_encoded = X_encoded[column_order]
|
54 |
+
|
55 |
+
# 2. Normalization
|
56 |
+
X_clean = transform_normalize(data = X_encoded,
|
57 |
+
normalizer = preprocessor['normalizer'])
|
58 |
+
|
59 |
+
return X_clean
|
60 |
+
|
61 |
+
def calculate_harvest_score(row):
|
62 |
+
variety = row['variety']
|
63 |
+
harvest = row['harvest']
|
64 |
+
variety_umum = ['Umum', 'Sintanur', 'Mentik']
|
65 |
+
variety_hibrida = ['Hibrida', 'Mapan']
|
66 |
+
|
67 |
+
if variety in variety_umum:
|
68 |
+
if harvest < 3000:
|
69 |
+
score_harvest = 46.79
|
70 |
+
elif 3000 <= harvest <= 5000:
|
71 |
+
score_harvest = 64.24
|
72 |
+
elif 5001 <= harvest <= 7000:
|
73 |
+
score_harvest = 93.57
|
74 |
+
else:
|
75 |
+
score_harvest = 102.83
|
76 |
+
|
77 |
+
elif variety in variety_hibrida:
|
78 |
+
if harvest < 5000:
|
79 |
+
score_harvest = 40.55
|
80 |
+
elif 5001 <= harvest <= 7000:
|
81 |
+
score_harvest = 54.02
|
82 |
+
elif 7001 <= harvest <= 9000:
|
83 |
+
score_harvest = 68.34
|
84 |
+
else:
|
85 |
+
score_harvest = 85.17
|
86 |
+
else:
|
87 |
+
score_harvest = 0
|
88 |
+
|
89 |
+
return score_harvest
|
90 |
+
|
91 |
+
def calculate_profit_score(row):
|
92 |
+
profit = row['profit']
|
93 |
+
|
94 |
+
if profit <= 0:
|
95 |
+
score_profit = 0
|
96 |
+
elif 1 <= profit <= 2000000:
|
97 |
+
score_profit = 27.84
|
98 |
+
else:
|
99 |
+
score_profit = 39.5
|
100 |
+
|
101 |
+
return score_profit
|
102 |
+
|
103 |
+
def calculate_complete_time_score(row):
|
104 |
+
complete_time = row['complete_time']
|
105 |
+
|
106 |
+
if complete_time <= 3:
|
107 |
+
score_complete_time = 10.21
|
108 |
+
return score_complete_time
|
109 |
+
|
110 |
+
elif 4 <= complete_time <= 7:
|
111 |
+
score_complete_time = 6.69
|
112 |
+
return score_complete_time
|
113 |
+
|
114 |
+
else:
|
115 |
+
score_complete_time = 1
|
116 |
+
return score_complete_time
|
117 |
+
|
118 |
+
def calculate_completion_rate_score(row):
|
119 |
+
completion_rate = row['completion_rate']
|
120 |
+
|
121 |
+
if completion_rate <= 60:
|
122 |
+
score_completion_rate = 17.31
|
123 |
+
return score_completion_rate
|
124 |
+
|
125 |
+
elif 61 <= completion_rate <= 70:
|
126 |
+
score_completion_rate = 21.04
|
127 |
+
return score_completion_rate
|
128 |
+
|
129 |
+
elif 71 <= completion_rate <= 80:
|
130 |
+
score_completion_rate = 25.21
|
131 |
+
return score_completion_rate
|
132 |
+
|
133 |
+
elif 81 <= completion_rate <= 90:
|
134 |
+
score_completion_rate = 30.1
|
135 |
+
return score_completion_rate
|
136 |
+
|
137 |
+
else:
|
138 |
+
score_completion_rate = 34.4
|
139 |
+
return score_completion_rate
|
140 |
+
|
141 |
+
def total_score(data):
|
142 |
+
harvest_score = data.apply(calculate_harvest_score, axis=1)
|
143 |
+
profit_score = data.apply(calculate_profit_score, axis=1)
|
144 |
+
completion_rate_score = data.apply(calculate_completion_rate_score, axis=1)
|
145 |
+
complete_time_score = data.apply(calculate_complete_time_score, axis=1)
|
146 |
+
|
147 |
+
score = harvest_score + profit_score + complete_time_score + completion_rate_score
|
148 |
+
|
149 |
+
return score
|
150 |
+
|
151 |
+
def map_class_to_label(class_score):
|
152 |
+
class_labels = {
|
153 |
+
0: "Sangat Baik",
|
154 |
+
1: "Baik",
|
155 |
+
2: "Cukup",
|
156 |
+
3: "Buruk",
|
157 |
+
4: "Sangat Buruk"
|
158 |
+
}
|
159 |
+
return class_labels.get(class_score, "Unknown")
|
160 |
+
|
161 |
+
def calculate_scoring(data):
|
162 |
+
score = total_score(data)
|
163 |
+
clean_data = preprocess(data)
|
164 |
+
hasil = loaded_model.predict(clean_data)
|
165 |
+
|
166 |
+
# Mapping nilai pada hasil ke label yang diinginkan
|
167 |
+
hasil_labels = [map_class_to_label(pred_class) for pred_class in hasil]
|
168 |
+
|
169 |
+
print('Hasil adalah', hasil_labels,
|
170 |
+
'\nTotal Score: ', score)
|
171 |
+
return hasil_labels, score
|
172 |
+
|
173 |
+
def main():
|
174 |
+
st.title("Project Scoring")
|
175 |
+
|
176 |
+
# Membuat tombol untuk upload file CSV
|
177 |
+
uploaded_file = st.file_uploader("Upload CSV file", type=["csv"])
|
178 |
+
|
179 |
+
if uploaded_file is not None:
|
180 |
+
# Membaca file CSV menjadi DataFrame
|
181 |
+
data = pd.read_csv(uploaded_file)
|
182 |
+
|
183 |
+
# Menampilkan preview dari data yang diupload
|
184 |
+
st.write("Preview Data:")
|
185 |
+
st.write(data.head())
|
186 |
+
|
187 |
+
# Membuat tombol "Calculate Scoring"
|
188 |
+
if st.button("Calculate Scoring"):
|
189 |
+
# Memanggil fungsi untuk menghitung scoring
|
190 |
+
hasil_scoring = calculate_scoring(data)
|
191 |
+
|
192 |
+
# Menampilkan hasil scoring
|
193 |
+
st.write("Hasil Scoring:")
|
194 |
+
hasil_df = pd.DataFrame({
|
195 |
+
'Kategori': hasil_scoring[0],
|
196 |
+
'Total Score': hasil_scoring[1]
|
197 |
+
})
|
198 |
+
st.table(hasil_df)
|
199 |
+
|
200 |
+
if __name__ == "__main__":
|
201 |
+
main()
|
preprocessor.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23a82f8723bdf2bdc87a564ae0bcf069f5f160bf31a76c6fd54070f1eb5a88e7
|
3 |
+
size 11522768
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.29.0
|
2 |
+
pandas==1.5.3
|
3 |
+
transformers==4.36.0
|
4 |
+
streamlit==1.29.0
|
5 |
+
pandas==1.5.3
|
6 |
+
joblib==1.2.0
|
7 |
+
scikit-learn==1.2.2
|
8 |
+
numpy==1.23.3
|
9 |
+
xgboost==2.0.2
|
10 |
+
pickle
|
trained_model.sav
ADDED
Binary file (44.6 kB). View file
|
|