ridahabbash commited on
Commit
9ed26a7
·
verified ·
1 Parent(s): 48cae0a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -0
app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
+
4
+ # Step 1: Load the fine-tuned model and tokenizer
5
+ MODEL_NAME = "ridahabbash/AccR4" # Replace with your model's Hub ID
6
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
7
+ model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
8
+
9
+ # Step 2: Define the prediction function
10
+ def generate_report(prompt):
11
+ # Tokenize input
12
+ inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
13
+
14
+ # Generate output
15
+ outputs = model.generate(**inputs, max_length=128)
16
+
17
+ # Decode and return the result
18
+ report = tokenizer.decode(outputs[0], skip_special_tokens=True)
19
+ return report
20
+
21
+ # Step 3: Create the Streamlit interface
22
+ st.title("Accounting Report Generator")
23
+ st.markdown("Enter a ledger entry below, and the model will generate a report.")
24
+
25
+ # Input textbox
26
+ prompt = st.text_area("Ledger Entry", placeholder="Enter ledger details here...")
27
+
28
+ # Generate button
29
+ if st.button("Generate Report"):
30
+ if prompt.strip() == "":
31
+ st.error("Please enter a valid ledger entry.")
32
+ else:
33
+ # Generate report
34
+ with st.spinner("Generating report..."):
35
+ report = generate_report(prompt)
36
+ # Display the report
37
+ st.success("Report generated successfully!")
38
+ st.subheader("Generated Report:")
39
+ st.write(report)
40
+
41
+