Spaces:
Sleeping
Sleeping
Create development/app
Browse files- development/app +151 -0
development/app
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
import pytesseract
|
4 |
+
from PIL import Image
|
5 |
+
from pypdf import PdfReader
|
6 |
+
import ocrmypdf
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Image to Text
|
10 |
+
|
11 |
+
def fn_image_to_text(input_image):
|
12 |
+
return pytesseract.image_to_string(Image.open(input_image))
|
13 |
+
|
14 |
+
# PDF to Text
|
15 |
+
|
16 |
+
def fn_pdf_to_text(input_pdf):
|
17 |
+
reader = PdfReader(input_pdf)
|
18 |
+
|
19 |
+
output_pdf = ""
|
20 |
+
for page in reader.pages:
|
21 |
+
output_pdf+=page.extract_text()
|
22 |
+
|
23 |
+
image_count = 0
|
24 |
+
for page in reader.pages:
|
25 |
+
image_count += len(page.images)
|
26 |
+
|
27 |
+
if image_count > 0 and len(output_pdf) < 1000:
|
28 |
+
input_pdf_ocr = input_pdf.replace(".pdf", " - OCR.pdf")
|
29 |
+
ocrmypdf.ocr(input_pdf, input_pdf_ocr, force_ocr=True)
|
30 |
+
|
31 |
+
reader = PdfReader(input_pdf_ocr)
|
32 |
+
output_pdf = ""
|
33 |
+
for page in reader.pages:
|
34 |
+
output_pdf+=page.extract_text()
|
35 |
+
|
36 |
+
os.remove(input_pdf_ocr)
|
37 |
+
|
38 |
+
return output_pdf
|
39 |
+
|
40 |
+
# Inference
|
41 |
+
|
42 |
+
model_text = "meta-llama/Llama-3.2-3B-Instruct"
|
43 |
+
model_vision = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
44 |
+
|
45 |
+
client = InferenceClient()
|
46 |
+
|
47 |
+
def fn_text(
|
48 |
+
prompt,
|
49 |
+
history,
|
50 |
+
input,
|
51 |
+
#system_prompt,
|
52 |
+
max_tokens,
|
53 |
+
temperature,
|
54 |
+
top_p,
|
55 |
+
):
|
56 |
+
if input:
|
57 |
+
if os.path.splitext(input)[1].lower() in [".png", ".jpg", ".jpeg"]:
|
58 |
+
output = fn_image_to_text(input)
|
59 |
+
if os.path.splitext(input)[1].lower() == ".pdf":
|
60 |
+
output = fn_pdf_to_text(input)
|
61 |
+
else:
|
62 |
+
output = ""
|
63 |
+
|
64 |
+
messages = [{"role": "system", "content": [{"type": "text", "text": output}]}]
|
65 |
+
#messages = [{"role": "system", "content": [{"type": "text", "text": system_prompt}]}]
|
66 |
+
history.append(messages[0])
|
67 |
+
|
68 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": prompt}]})
|
69 |
+
history.append(messages[1])
|
70 |
+
|
71 |
+
stream = client.chat.completions.create(
|
72 |
+
model = model_text,
|
73 |
+
messages = history,
|
74 |
+
max_tokens = max_tokens,
|
75 |
+
temperature = temperature,
|
76 |
+
top_p = top_p,
|
77 |
+
stream = True,
|
78 |
+
)
|
79 |
+
|
80 |
+
chunks = []
|
81 |
+
for chunk in stream:
|
82 |
+
chunks.append(chunk.choices[0].delta.content or "")
|
83 |
+
yield "".join(chunks)
|
84 |
+
|
85 |
+
app_text = gr.ChatInterface(
|
86 |
+
fn = fn_text,
|
87 |
+
type = "messages",
|
88 |
+
additional_inputs = [
|
89 |
+
gr.File(type="filepath", label="Input"),
|
90 |
+
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
|
91 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
|
92 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
93 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
|
94 |
+
],
|
95 |
+
title = "Meta Llama",
|
96 |
+
description = model_text,
|
97 |
+
)
|
98 |
+
|
99 |
+
def fn_vision(
|
100 |
+
prompt,
|
101 |
+
image_url,
|
102 |
+
#system_prompt,
|
103 |
+
max_tokens,
|
104 |
+
temperature,
|
105 |
+
top_p,
|
106 |
+
):
|
107 |
+
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}]}]
|
108 |
+
|
109 |
+
if image_url:
|
110 |
+
messages[0]["content"].append({"type": "image_url", "image_url": {"url": image_url}})
|
111 |
+
|
112 |
+
stream = client.chat.completions.create(
|
113 |
+
model = model_vision,
|
114 |
+
messages = messages,
|
115 |
+
max_tokens = max_tokens,
|
116 |
+
temperature = temperature,
|
117 |
+
top_p = top_p,
|
118 |
+
stream = True,
|
119 |
+
)
|
120 |
+
|
121 |
+
chunks = []
|
122 |
+
for chunk in stream:
|
123 |
+
chunks.append(chunk.choices[0].delta.content or "")
|
124 |
+
yield "".join(chunks)
|
125 |
+
|
126 |
+
app_vision = gr.Interface(
|
127 |
+
fn = fn_vision,
|
128 |
+
inputs = [
|
129 |
+
gr.Textbox(label="Prompt"),
|
130 |
+
gr.Textbox(label="Image URL")
|
131 |
+
],
|
132 |
+
outputs = [
|
133 |
+
gr.Textbox(label="Output")
|
134 |
+
],
|
135 |
+
additional_inputs = [
|
136 |
+
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
|
137 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
|
138 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
139 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
|
140 |
+
],
|
141 |
+
title = "Meta Llama",
|
142 |
+
description = model_vision,
|
143 |
+
)
|
144 |
+
|
145 |
+
app = gr.TabbedInterface(
|
146 |
+
[app_text, app_vision],
|
147 |
+
["Text", "Vision"]
|
148 |
+
).launch()
|
149 |
+
|
150 |
+
#if __name__ == "__main__":
|
151 |
+
# app.launch()
|