Spaces:
Running
Running
File size: 2,863 Bytes
4ab8c75 dfddde4 de1b844 0329404 de1b844 60d4859 c6925d2 ae3d933 619bc26 de1b844 60d4859 90b6f18 60d4859 0715c3e 60d4859 28944a9 0329404 2619751 de1b844 28944a9 60d4859 d7c4ce9 28944a9 d7c4ce9 dfddde4 60d4859 94f6279 de1b844 619bc26 de1b844 0329404 de1b844 60d4859 0329404 60d4859 0329404 60d4859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
# Inference
import gradio as gr
from huggingface_hub import InferenceClient
model_text = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model_vision = "meta-llama/Llama-3.2-11B-Vision-Instruct"
client = InferenceClient()
def fn_text(
prompt,
history,
system_prompt,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": [{"type": "text", "text": system_prompt}]}]
history.append(messages[0])
messages.append({"role": "user", "content": [{"type": "text", "text": prompt}]})
history.append(messages[1])
stream = client.chat.completions.create(
model = model_text,
messages = history,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True
)
chunks = []
for chunk in stream:
chunks.append(chunk.choices[0].delta.content or "")
yield "".join(chunks)
app_text = gr.ChatInterface(
fn = fn_text,
type = "messages",
additional_inputs = [
gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Meta Llama",
description = model_text,
)
def fn_vision(
prompt,
image_url,
#system_prompt,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}]}]
if image_url:
messages[0]["content"].append({"type": "image_url", "image_url": {"url": image_url}})
stream = client.chat.completions.create(
model = model_vision,
messages = messages,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True
)
chunks = []
for chunk in stream:
chunks.append(chunk.choices[0].delta.content or "")
yield "".join(chunks)
app_vision = gr.Interface(
fn = fn_vision,
inputs = [
gr.Textbox(label="Prompt"),
gr.Textbox(label="Image URL")
],
outputs = [
gr.Textbox(label="Output")
],
additional_inputs = [
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Meta Llama",
description = model_vision,
)
app = gr.TabbedInterface(
[app_text, app_vision],
["Text", "Vision"]
).launch()
#if __name__ == "__main__":
# app.launch() |