File size: 830 Bytes
fe94126
4ab8c75
 
dfddde4
 
4ab8c75
e10e33e
ad24851
01655b3
 
ce2aedb
c50b40a
01655b3
d5446b0
01655b3
4ab8c75
ce2aedb
fe94126
4ab8c75
 
 
 
 
e10e33e
4ab8c75
 
 
 
1156050
4ab8c75
 
 
 
 
 
 
ce2aedb
c50b40a
4ab8c75
 
 
fe94126
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
"""
# Inference

import gradio as gr

app = gr.load(
    "meta-llama/Llama-3.2-3B-Instruct",
    src = "models",
    inputs = [gr.Textbox(label = "Input")],
    outputs = [gr.Textbox(label = "Output")],
    title = "Meta Llama",
    description = "Inference",
    examples = [
        ["Hello, World."]
    ]
).launch()
"""

# Pipeline

import gradio as gr
from transformers import pipeline

pipe = pipeline(model = "meta-llama/Llama-3.2-3B-Instruct")

def fn(input):
    output = pipe(
        input,
        max_new_tokens = 2048
    )
    return output[0]["generated_text"]#[len(input):]

app = gr.Interface(
    fn = fn,
    inputs = [gr.Textbox(label = "Input")],
    outputs = [gr.Textbox(label = "Output")],
    title = "Meta Llama",
    description = "Pipeline",
    examples = [
        ["Hello, World."]
    ]
).launch()