Spaces:
Sleeping
Sleeping
File size: 4,141 Bytes
dfddde4 de1b844 e174db6 de1b844 0cec9e8 0329404 de1b844 60d4859 c6925d2 ae3d933 e174db6 de1b844 60d4859 e174db6 90b6f18 60d4859 0715c3e 60d4859 28944a9 0329404 2619751 de1b844 7524b2b 28944a9 60d4859 d7c4ce9 28944a9 d7c4ce9 dfddde4 60d4859 94f6279 de1b844 e174db6 de1b844 0329404 de1b844 60d4859 0329404 60d4859 7524b2b 60d4859 0329404 60d4859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import gradio as gr
from huggingface_hub import InferenceClient
import pytesseract
from PIL import Image
from pypdf import PdfReader
import ocrmypdf
import os
# Image to Text
def fn_image_to_text(input_image):
return pytesseract.image_to_string(Image.open(input_image))
# PDF to Text
def fn_pdf_to_text(input_pdf):
reader = PdfReader(input_pdf)
output_pdf = ""
for page in reader.pages:
output_pdf+=page.extract_text()
image_count = 0
for page in reader.pages:
image_count += len(page.images)
if image_count > 0 and len(output_pdf) < 1000:
input_pdf_ocr = input_pdf.replace(".pdf", " - OCR.pdf")
ocrmypdf.ocr(input_pdf, input_pdf_ocr, force_ocr=True)
reader = PdfReader(input_pdf_ocr)
output_pdf = ""
for page in reader.pages:
output_pdf+=page.extract_text()
os.remove(input_pdf_ocr)
return output_pdf
# Inference
model_text = "meta-llama/Llama-3.2-3B-Instruct"
model_vision = "meta-llama/Llama-3.2-11B-Vision-Instruct"
client = InferenceClient()
def fn_text(
prompt,
history,
input,
#system_prompt,
max_tokens,
temperature,
top_p,
):
if input:
if os.path.splitext(input)[1].lower() in [".png", ".jpg", ".jpeg"]:
output = fn_image_to_text(input)
if os.path.splitext(input)[1].lower() == ".pdf":
output = fn_pdf_to_text(input)
else:
output = ""
messages = [{"role": "system", "content": [{"type": "text", "text": output}]}]
#messages = [{"role": "system", "content": [{"type": "text", "text": system_prompt}]}]
history.append(messages[0])
messages.append({"role": "user", "content": [{"type": "text", "text": prompt}]})
history.append(messages[1])
stream = client.chat.completions.create(
model = model_text,
messages = history,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True,
)
chunks = []
for chunk in stream:
chunks.append(chunk.choices[0].delta.content or "")
yield "".join(chunks)
app_text = gr.ChatInterface(
fn = fn_text,
type = "messages",
additional_inputs = [
gr.File(type="filepath", label="Input"),
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Meta Llama",
description = model_text,
)
def fn_vision(
prompt,
image_url,
#system_prompt,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}]}]
if image_url:
messages[0]["content"].append({"type": "image_url", "image_url": {"url": image_url}})
stream = client.chat.completions.create(
model = model_vision,
messages = messages,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True,
)
chunks = []
for chunk in stream:
chunks.append(chunk.choices[0].delta.content or "")
yield "".join(chunks)
app_vision = gr.Interface(
fn = fn_vision,
inputs = [
gr.Textbox(label="Prompt"),
gr.Textbox(label="Image URL")
],
outputs = [
gr.Textbox(label="Output")
],
additional_inputs = [
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Meta Llama",
description = model_vision,
)
app = gr.TabbedInterface(
[app_text, app_vision],
["Text", "Vision"]
).launch()
#if __name__ == "__main__":
# app.launch() |