Spaces:
Sleeping
Sleeping
File size: 1,591 Bytes
4ab8c75 dfddde4 de1b844 68d1aeb de1b844 c6925d2 e6d6ab6 c6925d2 de1b844 c6925d2 28944a9 de1b844 0ec049b 743689c c6925d2 de1b844 28944a9 c6925d2 de1b844 28944a9 743689c dfddde4 de1b844 94f6279 de1b844 bff3f06 de1b844 c6925d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
# Inference
import gradio as gr
from huggingface_hub import InferenceClient
model = "meta-llama/Llama-3.2-3B-Instruct"
client = InferenceClient(model)
def fn(
prompt,
#history: list[tuple[str, str]],
history,
#system_prompt,
max_tokens,
temperature,
top_p,
):
#messages = [{"role": "system", "content": system_prompt}]
messages = [{"role": "user", "content": prompt}]
#for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
history.append({"role": "user", "content": prompt})
#messages.append({"role": "user", "content": prompt})
stream = client.chat.completions.create(
model = model,
messages = messages,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True
)
response = ""
for chunk in stream:
response += chunk.choices[0].delta.content
return response
app = gr.ChatInterface(
fn = fn,
type = "messages",
additional_inputs = [
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Meta Llama",
description = model,
)
if __name__ == "__main__":
app.launch() |