Spaces:
Sleeping
Sleeping
File size: 1,218 Bytes
4ab8c75 dfddde4 de1b844 68d1aeb de1b844 c6925d2 ae3d933 619bc26 de1b844 35bd033 44b3e69 2b56ac4 de1b844 28944a9 c6925d2 2619751 de1b844 28944a9 d7c4ce9 28944a9 d7c4ce9 dfddde4 de1b844 94f6279 de1b844 619bc26 de1b844 c6925d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
# Inference
import gradio as gr
from huggingface_hub import InferenceClient
model = "meta-llama/Llama-3.2-3B-Instruct"
client = InferenceClient(model)
def fn(
prompt,
history,
system_prompt,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "user", "content": prompt}]
history.append(messages[0])
stream = client.chat.completions.create(
model = model,
messages = history,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True
)
chunks = []
for chunk in stream:
chunks.append(chunk.choices[0].delta.content or "")
yield "".join(chunks)
app = gr.ChatInterface(
fn = fn,
type = "messages",
additional_inputs = [
gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Meta Llama",
description = model,
)
if __name__ == "__main__":
app.launch() |