""" # Inference import gradio as gr app = gr.load( "google/gemma-2-2b-it", src = "models", inputs = [gr.Textbox(label = "Input")], outputs = [gr.Textbox(label = "Output")], title = "Google Gemma", description = "Inference", examples = [ ["Hello, World."] ] ).launch() """ """ # Pipeline import gradio as gr from transformers import pipeline pipe = pipeline(model = "google/gemma-2-2b-it") def fn(input): output = pipe( input, max_new_tokens = 2048 ) return output[0]["generated_text"]#[len(input):] app = gr.Interface( fn = fn, inputs = [gr.Textbox(label = "Input")], outputs = [gr.Textbox(label = "Output")], title = "Google Gemma", description = "Pipeline", examples = [ ["Hello, World."] ] ).launch() """ import gradio as gr from huggingface_hub import InferenceClient import os hf_token = os.getenv("HF_TOKEN") client = InferenceClient("google/gemma-2-2b-it") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch() """ client = InferenceClient(api_key=hf_token) def fn(prompt, history=[]): messages = [] for user_prompt, bot_response in history: messages.append({"role": "user", "content": user_prompt}) messages.append({"role": "bot", "content": bot_response}) messages.append({"role": "user", "content": prompt}) stream = client.chat.completions.create( model = "google/gemma-2-2b-it", messages = messages, #temperature = 0.5, #max_tokens = 2048, #top_p = 0.7, stream = True ) bot_response = "".join(chunk.choices[0].delta.content for chunk in stream) history.append((prompt, bot_response)) return bot_response, history app = gr.Interface( fn = fn, inputs = [gr.Textbox(label = "Input")], outputs = [gr.Textbox(label = "Output")], title = "Google Gemma", description = "Chatbot", examples = [ ["Hello, World."] ] ).launch() """