richardkimsm89 commited on
Commit
242e31b
·
verified ·
1 Parent(s): 24ef847

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -62
app.py CHANGED
@@ -15,52 +15,26 @@ app = gr.load(
15
  ]
16
  ).launch()
17
  """
18
- """
19
- # Pipeline
20
-
21
- import gradio as gr
22
- from transformers import pipeline
23
-
24
- pipe = pipeline(model = "google/gemma-2-2b-it")
25
 
26
- def fn(input):
27
- output = pipe(
28
- input,
29
- max_new_tokens = 2048
30
- )
31
- return output[0]["generated_text"]#[len(input):]
32
-
33
- app = gr.Interface(
34
- fn = fn,
35
- inputs = [gr.Textbox(label = "Input")],
36
- outputs = [gr.Textbox(label = "Output")],
37
- title = "Google Gemma",
38
- description = "Pipeline",
39
- examples = [
40
- ["Hello, World."]
41
- ]
42
- ).launch()
43
- """
44
 
45
  import gradio as gr
46
  from huggingface_hub import InferenceClient
47
- import os
48
 
49
  #hf_token = os.getenv("HF_TOKEN")
50
 
51
  client = InferenceClient("google/gemma-2-2b-it")
52
 
53
- def respond(
54
  message,
55
  history: list[tuple[str, str]],
56
  #system_message,
57
- ##user_message,
58
  max_tokens,
59
  temperature,
60
  top_p,
61
  ):
62
  #messages = [{"role": "system", "content": system_message}]
63
- ##messages = [{"role": "user", "content": user_message}]
64
  messages = []
65
 
66
  for val in history:
@@ -75,61 +49,55 @@ def respond(
75
 
76
  for message in client.chat_completion(
77
  messages,
78
- max_tokens=max_tokens,
79
- temperature=temperature,
80
- top_p=top_p,
81
- stream=True,
82
  ):
83
  token = message.choices[0].delta.content
84
 
85
  response += token
86
  yield response
87
 
88
- demo = gr.ChatInterface(
89
- respond,
90
- additional_inputs=[
91
  #gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
92
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
93
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
94
  gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
95
  ],
96
- )
97
-
 
 
 
 
 
98
  if __name__ == "__main__":
99
  demo.launch()
100
-
101
  """
102
- client = InferenceClient(api_key=hf_token)
 
103
 
104
- def fn(prompt, history=[]):
105
- messages = []
106
-
107
- for user_prompt, bot_response in history:
108
- messages.append({"role": "user", "content": user_prompt})
109
- messages.append({"role": "bot", "content": bot_response})
110
-
111
- messages.append({"role": "user", "content": prompt})
112
-
113
- stream = client.chat.completions.create(
114
- model = "google/gemma-2-2b-it",
115
- messages = messages,
116
- #temperature = 0.5,
117
- #max_tokens = 2048,
118
- #top_p = 0.7,
119
- stream = True
120
- )
121
 
122
- bot_response = "".join(chunk.choices[0].delta.content for chunk in stream)
123
 
124
- history.append((prompt, bot_response))
125
- return bot_response, history
 
 
 
 
126
 
127
  app = gr.Interface(
128
- fn = fn,
129
  inputs = [gr.Textbox(label = "Input")],
130
  outputs = [gr.Textbox(label = "Output")],
131
  title = "Google Gemma",
132
- description = "Chatbot",
133
  examples = [
134
  ["Hello, World."]
135
  ]
 
15
  ]
16
  ).launch()
17
  """
 
 
 
 
 
 
 
18
 
19
+ # Inference Client
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  import gradio as gr
22
  from huggingface_hub import InferenceClient
23
+ #import os
24
 
25
  #hf_token = os.getenv("HF_TOKEN")
26
 
27
  client = InferenceClient("google/gemma-2-2b-it")
28
 
29
+ def fn_chat(
30
  message,
31
  history: list[tuple[str, str]],
32
  #system_message,
 
33
  max_tokens,
34
  temperature,
35
  top_p,
36
  ):
37
  #messages = [{"role": "system", "content": system_message}]
 
38
  messages = []
39
 
40
  for val in history:
 
49
 
50
  for message in client.chat_completion(
51
  messages,
52
+ max_tokens = max_tokens,
53
+ temperature = temperature,
54
+ top_p = top_p,
55
+ stream = True,
56
  ):
57
  token = message.choices[0].delta.content
58
 
59
  response += token
60
  yield response
61
 
62
+ app = gr.ChatInterface(
63
+ fn = fn_chat,
64
+ additional_inputs = [
65
  #gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
66
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
67
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
68
  gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
69
  ],
70
+ title = "Google Gemma",
71
+ description = "Chatbot",
72
+ examples = [
73
+ ["Hello, World."]
74
+ ]
75
+ ).launch
76
+ """
77
  if __name__ == "__main__":
78
  demo.launch()
 
79
  """
80
+ """
81
+ # Pipeline
82
 
83
+ import gradio as gr
84
+ from transformers import pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
+ pipe = pipeline(model = "google/gemma-2-2b-it")
87
 
88
+ def fn(input):
89
+ output = pipe(
90
+ input,
91
+ max_new_tokens = 2048
92
+ )
93
+ return output[0]["generated_text"]#[len(input):]
94
 
95
  app = gr.Interface(
96
+ fn = fn,
97
  inputs = [gr.Textbox(label = "Input")],
98
  outputs = [gr.Textbox(label = "Output")],
99
  title = "Google Gemma",
100
+ description = "Pipeline",
101
  examples = [
102
  ["Hello, World."]
103
  ]