Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,52 +15,26 @@ app = gr.load(
|
|
15 |
]
|
16 |
).launch()
|
17 |
"""
|
18 |
-
"""
|
19 |
-
# Pipeline
|
20 |
-
|
21 |
-
import gradio as gr
|
22 |
-
from transformers import pipeline
|
23 |
-
|
24 |
-
pipe = pipeline(model = "google/gemma-2-2b-it")
|
25 |
|
26 |
-
|
27 |
-
output = pipe(
|
28 |
-
input,
|
29 |
-
max_new_tokens = 2048
|
30 |
-
)
|
31 |
-
return output[0]["generated_text"]#[len(input):]
|
32 |
-
|
33 |
-
app = gr.Interface(
|
34 |
-
fn = fn,
|
35 |
-
inputs = [gr.Textbox(label = "Input")],
|
36 |
-
outputs = [gr.Textbox(label = "Output")],
|
37 |
-
title = "Google Gemma",
|
38 |
-
description = "Pipeline",
|
39 |
-
examples = [
|
40 |
-
["Hello, World."]
|
41 |
-
]
|
42 |
-
).launch()
|
43 |
-
"""
|
44 |
|
45 |
import gradio as gr
|
46 |
from huggingface_hub import InferenceClient
|
47 |
-
import os
|
48 |
|
49 |
#hf_token = os.getenv("HF_TOKEN")
|
50 |
|
51 |
client = InferenceClient("google/gemma-2-2b-it")
|
52 |
|
53 |
-
def
|
54 |
message,
|
55 |
history: list[tuple[str, str]],
|
56 |
#system_message,
|
57 |
-
##user_message,
|
58 |
max_tokens,
|
59 |
temperature,
|
60 |
top_p,
|
61 |
):
|
62 |
#messages = [{"role": "system", "content": system_message}]
|
63 |
-
##messages = [{"role": "user", "content": user_message}]
|
64 |
messages = []
|
65 |
|
66 |
for val in history:
|
@@ -75,61 +49,55 @@ def respond(
|
|
75 |
|
76 |
for message in client.chat_completion(
|
77 |
messages,
|
78 |
-
max_tokens=max_tokens,
|
79 |
-
temperature=temperature,
|
80 |
-
top_p=top_p,
|
81 |
-
stream=True,
|
82 |
):
|
83 |
token = message.choices[0].delta.content
|
84 |
|
85 |
response += token
|
86 |
yield response
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
additional_inputs=[
|
91 |
#gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
92 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
93 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
94 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
95 |
],
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
if __name__ == "__main__":
|
99 |
demo.launch()
|
100 |
-
|
101 |
"""
|
102 |
-
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
for user_prompt, bot_response in history:
|
108 |
-
messages.append({"role": "user", "content": user_prompt})
|
109 |
-
messages.append({"role": "bot", "content": bot_response})
|
110 |
-
|
111 |
-
messages.append({"role": "user", "content": prompt})
|
112 |
-
|
113 |
-
stream = client.chat.completions.create(
|
114 |
-
model = "google/gemma-2-2b-it",
|
115 |
-
messages = messages,
|
116 |
-
#temperature = 0.5,
|
117 |
-
#max_tokens = 2048,
|
118 |
-
#top_p = 0.7,
|
119 |
-
stream = True
|
120 |
-
)
|
121 |
|
122 |
-
|
123 |
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
126 |
|
127 |
app = gr.Interface(
|
128 |
-
fn = fn,
|
129 |
inputs = [gr.Textbox(label = "Input")],
|
130 |
outputs = [gr.Textbox(label = "Output")],
|
131 |
title = "Google Gemma",
|
132 |
-
description = "
|
133 |
examples = [
|
134 |
["Hello, World."]
|
135 |
]
|
|
|
15 |
]
|
16 |
).launch()
|
17 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Inference Client
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
import gradio as gr
|
22 |
from huggingface_hub import InferenceClient
|
23 |
+
#import os
|
24 |
|
25 |
#hf_token = os.getenv("HF_TOKEN")
|
26 |
|
27 |
client = InferenceClient("google/gemma-2-2b-it")
|
28 |
|
29 |
+
def fn_chat(
|
30 |
message,
|
31 |
history: list[tuple[str, str]],
|
32 |
#system_message,
|
|
|
33 |
max_tokens,
|
34 |
temperature,
|
35 |
top_p,
|
36 |
):
|
37 |
#messages = [{"role": "system", "content": system_message}]
|
|
|
38 |
messages = []
|
39 |
|
40 |
for val in history:
|
|
|
49 |
|
50 |
for message in client.chat_completion(
|
51 |
messages,
|
52 |
+
max_tokens = max_tokens,
|
53 |
+
temperature = temperature,
|
54 |
+
top_p = top_p,
|
55 |
+
stream = True,
|
56 |
):
|
57 |
token = message.choices[0].delta.content
|
58 |
|
59 |
response += token
|
60 |
yield response
|
61 |
|
62 |
+
app = gr.ChatInterface(
|
63 |
+
fn = fn_chat,
|
64 |
+
additional_inputs = [
|
65 |
#gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
66 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
67 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
68 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
69 |
],
|
70 |
+
title = "Google Gemma",
|
71 |
+
description = "Chatbot",
|
72 |
+
examples = [
|
73 |
+
["Hello, World."]
|
74 |
+
]
|
75 |
+
).launch
|
76 |
+
"""
|
77 |
if __name__ == "__main__":
|
78 |
demo.launch()
|
|
|
79 |
"""
|
80 |
+
"""
|
81 |
+
# Pipeline
|
82 |
|
83 |
+
import gradio as gr
|
84 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
pipe = pipeline(model = "google/gemma-2-2b-it")
|
87 |
|
88 |
+
def fn(input):
|
89 |
+
output = pipe(
|
90 |
+
input,
|
91 |
+
max_new_tokens = 2048
|
92 |
+
)
|
93 |
+
return output[0]["generated_text"]#[len(input):]
|
94 |
|
95 |
app = gr.Interface(
|
96 |
+
fn = fn,
|
97 |
inputs = [gr.Textbox(label = "Input")],
|
98 |
outputs = [gr.Textbox(label = "Output")],
|
99 |
title = "Google Gemma",
|
100 |
+
description = "Pipeline",
|
101 |
examples = [
|
102 |
["Hello, World."]
|
103 |
]
|