google-gemma / app.py
richardkimsm89's picture
Update app.py
bf50cbd verified
raw
history blame
1.98 kB
import gradio as gr
from huggingface_hub import InferenceClient
model_gemma_2 = "google/gemma-2-27b-it"
client = InferenceClient()
def fn_gemma_2(
prompt,
history,
input,
#system_prompt,
max_tokens,
temperature,
top_p,
):
# System Prompt
#messages = [{"role": "system", "content": system_prompt}]
#history.append(messages[0])
#messages.append({"role": "user", "content": prompt})
#history.append(messages[1])
messages = [{"role": "user", "content": prompt}]
history.append(messages[0])
#messages = [
# {
# "role": "user",
# "content": [
# {
# "type": "text",
# "text": prompt
# },
# {
# "type": "image_url",
# "image_url": {
# "url": input
# }
# }
# ]
# }
#]
#history.append(messages[0])
stream = client.chat.completions.create(
model = model_gemma_2,
messages = history,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True,
)
chunks = []
for chunk in stream:
chunks.append(chunk.choices[0].delta.content or "")
yield "".join(chunks)
app_gemma_2 = gr.ChatInterface(
fn = fn_gemma_2,
type = "messages",
additional_inputs = [
gr.Textbox(label="Input"),
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Google Gemma 2",
description = model_gemma_2,
)
app = gr.TabbedInterface(
[app_gemma_2],
["Gemma 2"]
).launch()