google-gemma / app.py
richardkimsm89's picture
Update app.py
97a4aa1 verified
raw
history blame
3.06 kB
# Inference
import gradio as gr
from huggingface_hub import InferenceClient
model = "google/gemma-2-27b-it"
client = InferenceClient(model)
def fn_text(
prompt,
history,
#system_prompt,
max_tokens,
temperature,
top_p,
):
#messages = [{"role": "system", "content": system_prompt}]
#history.append(messages[0])
#messages.append({"role": "user", "content": prompt})
#history.append(messages[1])
messages = [{"role": "user", "content": prompt}]
history.append(messages[0])
stream = client.chat.completions.create(
model = model,
messages = history,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True
)
chunks = []
for chunk in stream:
chunks.append(chunk.choices[0].delta.content or "")
yield "".join(chunks)
app_text = gr.ChatInterface(
fn = fn_text,
type = "messages",
additional_inputs = [
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Google Gemma",
description = model,
)
app = gr.TabbedInterface(
[app_text],
["Text"]
).launch()
#if __name__ == "__main__":
# app.launch()
"""
# Inference
import gradio as gr
from huggingface_hub import InferenceClient
model = "google/gemma-2-27b-it"
#model = "google/gemma-2-9b-it"
#model = "google/gemma-2-2b-it"
client = InferenceClient(model)
def fn(
message,
history: list[tuple[str, str]],
#system_message,
max_tokens,
temperature,
top_p,
):
#messages = [{"role": "system", "content": system_message}]
messages = []
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
#messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "bot", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True,
):
token = message.choices[0].delta.content
response += token
yield response
app = gr.ChatInterface(
fn = fn,
#type = "messages",
additional_inputs = [
#gr.Textbox(value="You are a helpful assistant.", label="System Message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Google Gemma",
description = model,
)
if __name__ == "__main__":
app.launch()