google-gemma / app.py
richardkimsm89's picture
Update app.py
24ef847 verified
raw
history blame
3.26 kB
"""
# Inference
import gradio as gr
app = gr.load(
"google/gemma-2-2b-it",
src = "models",
inputs = [gr.Textbox(label = "Input")],
outputs = [gr.Textbox(label = "Output")],
title = "Google Gemma",
description = "Inference",
examples = [
["Hello, World."]
]
).launch()
"""
"""
# Pipeline
import gradio as gr
from transformers import pipeline
pipe = pipeline(model = "google/gemma-2-2b-it")
def fn(input):
output = pipe(
input,
max_new_tokens = 2048
)
return output[0]["generated_text"]#[len(input):]
app = gr.Interface(
fn = fn,
inputs = [gr.Textbox(label = "Input")],
outputs = [gr.Textbox(label = "Output")],
title = "Google Gemma",
description = "Pipeline",
examples = [
["Hello, World."]
]
).launch()
"""
import gradio as gr
from huggingface_hub import InferenceClient
import os
#hf_token = os.getenv("HF_TOKEN")
client = InferenceClient("google/gemma-2-2b-it")
def respond(
message,
history: list[tuple[str, str]],
#system_message,
##user_message,
max_tokens,
temperature,
top_p,
):
#messages = [{"role": "system", "content": system_message}]
##messages = [{"role": "user", "content": user_message}]
messages = []
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
):
token = message.choices[0].delta.content
response += token
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
#gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()
"""
client = InferenceClient(api_key=hf_token)
def fn(prompt, history=[]):
messages = []
for user_prompt, bot_response in history:
messages.append({"role": "user", "content": user_prompt})
messages.append({"role": "bot", "content": bot_response})
messages.append({"role": "user", "content": prompt})
stream = client.chat.completions.create(
model = "google/gemma-2-2b-it",
messages = messages,
#temperature = 0.5,
#max_tokens = 2048,
#top_p = 0.7,
stream = True
)
bot_response = "".join(chunk.choices[0].delta.content for chunk in stream)
history.append((prompt, bot_response))
return bot_response, history
app = gr.Interface(
fn = fn,
inputs = [gr.Textbox(label = "Input")],
outputs = [gr.Textbox(label = "Output")],
title = "Google Gemma",
description = "Chatbot",
examples = [
["Hello, World."]
]
).launch()
"""