Spaces:
Sleeping
Sleeping
File size: 4,104 Bytes
f64354b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import gradio as gr
from huggingface_hub import InferenceClient
import pytesseract
from pypdf import PdfReader
import ocrmypdf
from PIL import Image
import os
# Image to Text
def fn_image_to_text(input_image):
return pytesseract.image_to_string(Image.open(input_image))
# PDF to Text
def fn_pdf_to_text(input_pdf):
reader = PdfReader(input_pdf)
output_pdf = ""
for page in reader.pages:
output_pdf+=page.extract_text()
image_count = 0
for page in reader.pages:
image_count += len(page.images)
if image_count > 0 and len(output_pdf) < 1000:
input_pdf_ocr = input_pdf.replace(".pdf", " - OCR.pdf")
ocrmypdf.ocr(input_pdf, input_pdf_ocr, force_ocr=True)
reader = PdfReader(input_pdf_ocr)
output_pdf = ""
for page in reader.pages:
output_pdf+=page.extract_text()
os.remove(input_pdf_ocr)
return output_pdf
# Inference
model_text = "google/gemma-3-27b-it"
#model_text = "google/gemma-2-27b-it"
#model_vision = "google/paligemma2-3b-pt-224"
client = InferenceClient()
def fn_text(
prompt,
history,
input,
#system_prompt,
max_tokens,
temperature,
top_p,
):
if input:
if os.path.splitext(input)[1].lower() in [".png", ".jpg", ".jpeg"]:
output = fn_image_to_text(input)
if os.path.splitext(input)[1].lower() == ".pdf":
output = fn_pdf_to_text(input)
else:
output = ""
#messages = [{"role": "system", "content": system_prompt}]
#history.append(messages[0])
#messages.append({"role": "user", "content": prompt})
#history.append(messages[1])
messages = [{"role": "user", "content": prompt + " " + output}]
history.append(messages[0])
stream = client.chat.completions.create(
model = model_text,
messages = history,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True,
)
chunks = []
for chunk in stream:
chunks.append(chunk.choices[0].delta.content or "")
yield "".join(chunks)
app_text = gr.ChatInterface(
fn = fn_text,
type = "messages",
additional_inputs = [
gr.File(type="filepath", label="Input"),
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Google Gemma",
description = model_text,
)
"""
def fn_vision(
prompt,
image_url,
#system_prompt,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}]}]
if image_url:
messages[0]["content"].append({"type": "image_url", "image_url": {"url": image_url}})
stream = client.chat.completions.create(
model = model_vision,
messages = messages,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True,
)
chunks = []
for chunk in stream:
chunks.append(chunk.choices[0].delta.content or "")
yield "".join(chunks)
app_vision = gr.Interface(
fn = fn_vision,
inputs = [
gr.Textbox(label="Prompt"),
gr.Textbox(label="Image URL")
],
outputs = [
gr.Textbox(label="Output")
],
additional_inputs = [
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Google Gemma",
description = model_vision,
)
"""
app = gr.TabbedInterface(
[app_text],
["Text"]
).launch()
#if __name__ == "__main__":
# app.launch() |