Spaces:
Sleeping
Sleeping
File size: 1,254 Bytes
58d9279 ec03c70 58d9279 f56245e 0451106 58d9279 4c8c277 58d9279 52e622e 58d9279 18160e9 58d9279 0451106 f56245e 4c8c277 95555b5 4c8c277 dc8ca07 4c8c277 1357256 4c8c277 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
"""
# Inference
import gradio as gr
app = gr.load(
"google/gemma-2-2b-it",
src = "models",
inputs = [gr.Textbox(label = "Input")],
outputs = [gr.Textbox(label = "Output")],
title = "Google Gemma",
description = "Inference",
examples = [
["Hello, World."]
]
).launch()
"""
"""
# Pipeline
import gradio as gr
from transformers import pipeline
pipe = pipeline(model = "google/gemma-2-2b-it")
def fn(input):
output = pipe(
input,
max_new_tokens = 2048
)
return output[0]["generated_text"]#[len(input):]
app = gr.Interface(
fn = fn,
inputs = [gr.Textbox(label = "Input")],
outputs = [gr.Textbox(label = "Output")],
title = "Google Gemma",
description = "Pipeline",
examples = [
["Hello, World."]
]
).launch()
"""
import gradio as gr
from huggingface_hub import InferenceClient
import os
token = os.getenv("HF_TOKEN")
client = InferenceClient(api_key=token)
messages = [
{ "role": "user", "content": "Tell me a story" }
]
stream = client.chat.completions.create(
model="google/gemma-2-2b-it",
messages=messages,
temperature=0.5,
max_tokens=2048,
top_p=0.7,
stream=True
)
for chunk in stream:
print(chunk.choices[0].delta.content) |